Yujie Lin , Mengxi Chen , Yuanyuan Yu , Pengfei Xu , Fengyu Chen , Shenyue Zhou , Jiayu Xu , Wen Wu , Song Zhu , Yuxin An , Haiyang Zhang , Weipeng Wang
{"title":"Facile preparation of isolation columns filled with integral hybrid materials for efficient isolation of extracellular vesicles from microliter sample","authors":"Yujie Lin , Mengxi Chen , Yuanyuan Yu , Pengfei Xu , Fengyu Chen , Shenyue Zhou , Jiayu Xu , Wen Wu , Song Zhu , Yuxin An , Haiyang Zhang , Weipeng Wang","doi":"10.1016/j.aca.2025.343939","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Extracellular vesicles (EVs) and their anomalously altered cargoes represent a promising avenue for clinical diagnostics and prognostics. A critical challenge in EV research is the efficient isolation of these vesicles from complex biological samples with high recovery and purity. Although various of materials have good performance in EV isolation, these materials focus on the nanomaterials, which require multiple solution transfer steps in their use process. It will inevitably lead to sample loss, and is difficult to combine with online sample processing methods.</div></div><div><h3>Results</h3><div>In this study, we introduce a novel isolation column for isolation of EVs, termed EvBHM, which leverages a bi-functional hybrid monolith and a polyethylene (PE) sieve plate. This design integrates the membrane insertion of distearoyl phospholipid ethanolamine (DSPE) with metal affinity chromatography (MAC), utilizing the interaction between titanium ions and the phospholipid membrane of EVs. The PE sieve plate serves as a robust support for the pore structure. This method provides a straightforward and user-friendly approach to prepare the isolation column, which demonstrates superior enrichment efficiency for EVs from microliter of cell culture media or plasma, ensuring minimal sample loss and high purity. Consequently, 37 up-regulated and 91 down-regulated proteins of plasma in colorectal cancer (CRC) patients are found over the health donors, and serval of them are associated with the occurrence and development of CRC.</div></div><div><h3>Significance</h3><div>This method provides a straightforward and user-friendly approach to prepare of the isolation column, which demonstrates superior enrichment efficiency for EVs from microliter of cell culture media or serum as low as 10 μL, ensuring minimal sample loss and high purity. The results suggest this isolated method based on EvBHM isolation column is a promising strategy to search biomarkers for early diagnosis of cancers.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1352 ","pages":"Article 343939"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267025003332","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Extracellular vesicles (EVs) and their anomalously altered cargoes represent a promising avenue for clinical diagnostics and prognostics. A critical challenge in EV research is the efficient isolation of these vesicles from complex biological samples with high recovery and purity. Although various of materials have good performance in EV isolation, these materials focus on the nanomaterials, which require multiple solution transfer steps in their use process. It will inevitably lead to sample loss, and is difficult to combine with online sample processing methods.
Results
In this study, we introduce a novel isolation column for isolation of EVs, termed EvBHM, which leverages a bi-functional hybrid monolith and a polyethylene (PE) sieve plate. This design integrates the membrane insertion of distearoyl phospholipid ethanolamine (DSPE) with metal affinity chromatography (MAC), utilizing the interaction between titanium ions and the phospholipid membrane of EVs. The PE sieve plate serves as a robust support for the pore structure. This method provides a straightforward and user-friendly approach to prepare the isolation column, which demonstrates superior enrichment efficiency for EVs from microliter of cell culture media or plasma, ensuring minimal sample loss and high purity. Consequently, 37 up-regulated and 91 down-regulated proteins of plasma in colorectal cancer (CRC) patients are found over the health donors, and serval of them are associated with the occurrence and development of CRC.
Significance
This method provides a straightforward and user-friendly approach to prepare of the isolation column, which demonstrates superior enrichment efficiency for EVs from microliter of cell culture media or serum as low as 10 μL, ensuring minimal sample loss and high purity. The results suggest this isolated method based on EvBHM isolation column is a promising strategy to search biomarkers for early diagnosis of cancers.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.