Optimizing microstructure, dielectric performance, and optical characteristics of sodium yttrium copper titanate electroceramics through niobium doping

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Abdullah Al Moyeen , Raiyana Mashfiqua Mahmud , Md. Khairul Islam , Md. Lutfor Rahman
{"title":"Optimizing microstructure, dielectric performance, and optical characteristics of sodium yttrium copper titanate electroceramics through niobium doping","authors":"Abdullah Al Moyeen ,&nbsp;Raiyana Mashfiqua Mahmud ,&nbsp;Md. Khairul Islam ,&nbsp;Md. Lutfor Rahman","doi":"10.1016/j.jallcom.2025.179745","DOIUrl":null,"url":null,"abstract":"<div><div>Giant dielectric constant materials are indispensable for the next generation of miniaturized energy storage and electronic devices. However, achieving an optimal balance between high dielectric permittivity, low dielectric loss, and frequency stability remains a major challenge. Here, we report the role of Nb doping in modulating the electrical properties of Na<sub>1/2</sub>Y<sub>1/2</sub>Cu<sub>3</sub>Ti<sub>4-x</sub>Nb<sub>x</sub>O<sub>12+x/2</sub> (NYCTO) electroceramics, establishing detailed structure-property correlations that govern dielectric behavior. A series of Nb-doped NYCTO compositions (x = 0.00–0.15) were synthesized via a systematic solid-state reaction approach and thoroughly characterized. X-ray diffraction confirmed a body-centered cubic perovskite structure, with Nb incorporation inducing lattice expansion and reducing crystallite size. Field emission scanning electron microscopy revealed heterogeneous grain formation, with a strong correlation between grain size and dielectric permittivity. Notably, a colossal dielectric permittivity of ≈ 2.4 × 10<sup>4</sup> at 20 Hz and 303 K was achieved for x = 0.15, whereas the x = 0.06 composition exhibited the most balanced dielectric performance, with a permittivity of ≈ 1.46 × 10<sup>4</sup> at 1 kHz, good frequency stability, and a dielectric loss of ≈ 0.24. Impedance spectroscopy analysis confirmed the internal barrier layer capacitor (IBLC) effect as the primary mechanism behind the giant dielectric response. Furthermore, UV–vis spectroscopy revealed a tunable wide bandgap (3.31–3.87 eV) nature in NYCTO, influenced by quantum confinement effects. These findings provide critical insights into the role of Nb doping in tailoring the dielectric and electrical properties of NYCTO to develop high-performance dielectric materials.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1022 ","pages":"Article 179745"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825013039","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Giant dielectric constant materials are indispensable for the next generation of miniaturized energy storage and electronic devices. However, achieving an optimal balance between high dielectric permittivity, low dielectric loss, and frequency stability remains a major challenge. Here, we report the role of Nb doping in modulating the electrical properties of Na1/2Y1/2Cu3Ti4-xNbxO12+x/2 (NYCTO) electroceramics, establishing detailed structure-property correlations that govern dielectric behavior. A series of Nb-doped NYCTO compositions (x = 0.00–0.15) were synthesized via a systematic solid-state reaction approach and thoroughly characterized. X-ray diffraction confirmed a body-centered cubic perovskite structure, with Nb incorporation inducing lattice expansion and reducing crystallite size. Field emission scanning electron microscopy revealed heterogeneous grain formation, with a strong correlation between grain size and dielectric permittivity. Notably, a colossal dielectric permittivity of ≈ 2.4 × 104 at 20 Hz and 303 K was achieved for x = 0.15, whereas the x = 0.06 composition exhibited the most balanced dielectric performance, with a permittivity of ≈ 1.46 × 104 at 1 kHz, good frequency stability, and a dielectric loss of ≈ 0.24. Impedance spectroscopy analysis confirmed the internal barrier layer capacitor (IBLC) effect as the primary mechanism behind the giant dielectric response. Furthermore, UV–vis spectroscopy revealed a tunable wide bandgap (3.31–3.87 eV) nature in NYCTO, influenced by quantum confinement effects. These findings provide critical insights into the role of Nb doping in tailoring the dielectric and electrical properties of NYCTO to develop high-performance dielectric materials.
通过铌掺杂优化钛酸钇铜钠电陶瓷的微观结构、介电性能和光学特性
大介电常数材料是下一代小型化储能和电子器件不可缺少的材料。然而,实现高介电常数、低介电损耗和频率稳定性之间的最佳平衡仍然是一个主要挑战。在这里,我们报告了Nb掺杂在调节Na1/2Y1/2Cu3Ti4-xNbxO12+x/2 (NYCTO)电陶瓷电学性能中的作用,建立了详细的结构-性能相关性,控制介电行为。采用系统固相反应方法合成了一系列掺nb的NYCTO组合物(x = 0.000 ~ 0.15),并对其进行了表征。x射线衍射证实为体心立方钙钛矿结构,铌的掺入导致晶格膨胀,减小了晶体尺寸。场发射扫描电镜显示晶粒形成不均匀,晶粒尺寸与介电常数有很强的相关性。值得注意的是,当x = 0.15时,在20hz和3030k下的介电常数为≈2.4 × 104,而当x = 0.06时,介电常数为≈1.46 × 104,频率稳定性好,介电损耗为≈0.24。阻抗谱分析证实了内阻挡层电容效应是产生巨大介电响应的主要机制。紫外-可见光谱分析表明,NYCTO具有可调谐的宽禁带(3.31-3.87 eV),受量子约束效应的影响。这些发现为Nb掺杂在调整NYCTO的介电性能和电学性能以开发高性能介电材料方面的作用提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信