Sporophyte-directed gametogenesis in Arabidopsis

IF 15.8 1区 生物学 Q1 PLANT SCIENCES
Prakash Sivakumar, Saurabh Pandey, A. Ramesha, Jayeshkumar Narsibhai Davda, Aparna Singh, Chandan Kumar, Hardik Gala, Veeraputhiran Subbiah, Harikrishna Adicherla, Jyotsna Dhawan, L. Aravind, Imran Siddiqi
{"title":"Sporophyte-directed gametogenesis in Arabidopsis","authors":"Prakash Sivakumar, Saurabh Pandey, A. Ramesha, Jayeshkumar Narsibhai Davda, Aparna Singh, Chandan Kumar, Hardik Gala, Veeraputhiran Subbiah, Harikrishna Adicherla, Jyotsna Dhawan, L. Aravind, Imran Siddiqi","doi":"10.1038/s41477-025-01932-y","DOIUrl":null,"url":null,"abstract":"Plants alternate between diploid sporophyte and haploid gametophyte generations1. In mosses, which retain features of ancestral land plants, the gametophyte is dominant and has an independent existence. However, in flowering plants the gametophyte has undergone evolutionary reduction to just a few cells enclosed within the sporophyte. The gametophyte is thought to retain genetic control of its development even after reduction2. Here we show that male gametophyte development in Arabidopsis, long considered to be autonomous, is also under genetic control of the sporophyte via a repressive mechanism that includes large-scale regulation of protein turnover. We identify an Arabidopsis gene SHUKR as an inhibitor of male gametic gene expression. SHUKR is unrelated to proteins of known function and acts sporophytically in meiosis to control gametophyte development by negatively regulating expression of a large set of genes specific to postmeiotic gametogenesis. This control emerged late in evolution as SHUKR homologues are found only in eudicots. We show that SHUKR is rapidly evolving under positive selection, suggesting that variation in control of protein turnover during male gametogenesis has played an important role in evolution within eudicots. Ancestral land plants had a free-living gametophyte, but in flowering plants the gametophyte develops within the sporophyte. This study shows that male gametophyte development in Arabidopsis is directed by the sporophyte through repression of gametogenesis genes.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 3","pages":"398-409"},"PeriodicalIF":15.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-025-01932-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plants alternate between diploid sporophyte and haploid gametophyte generations1. In mosses, which retain features of ancestral land plants, the gametophyte is dominant and has an independent existence. However, in flowering plants the gametophyte has undergone evolutionary reduction to just a few cells enclosed within the sporophyte. The gametophyte is thought to retain genetic control of its development even after reduction2. Here we show that male gametophyte development in Arabidopsis, long considered to be autonomous, is also under genetic control of the sporophyte via a repressive mechanism that includes large-scale regulation of protein turnover. We identify an Arabidopsis gene SHUKR as an inhibitor of male gametic gene expression. SHUKR is unrelated to proteins of known function and acts sporophytically in meiosis to control gametophyte development by negatively regulating expression of a large set of genes specific to postmeiotic gametogenesis. This control emerged late in evolution as SHUKR homologues are found only in eudicots. We show that SHUKR is rapidly evolving under positive selection, suggesting that variation in control of protein turnover during male gametogenesis has played an important role in evolution within eudicots. Ancestral land plants had a free-living gametophyte, but in flowering plants the gametophyte develops within the sporophyte. This study shows that male gametophyte development in Arabidopsis is directed by the sporophyte through repression of gametogenesis genes.

Abstract Image

Abstract Image

拟南芥孢子体导向配子发生
植物在二倍体孢子体和单倍体配子体之间交替生长。在保留祖先陆地植物特征的苔藓中,配子体占主导地位,独立存在。然而,在开花植物中,配子体经过进化减少到孢子体内的几个细胞。配子体被认为即使在还原后也保留了对其发育的遗传控制。本研究表明,拟南芥雄性配子体的发育,长期以来被认为是自主的,也受到孢子体的遗传控制,其抑制机制包括大规模调节蛋白质的转换。我们鉴定了一个拟南芥基因SHUKR作为雄性配子基因表达的抑制剂。SHUKR与已知功能的蛋白质无关,在减数分裂过程中,通过负性调节减数分裂后配子体发生特异性基因的表达来控制配子体的发育。这种控制是在进化的后期出现的,因为SHUKR同源物只在异体中发现。我们发现SHUKR在正选择下快速进化,这表明雄性配子体发生过程中蛋白质周转控制的变化在雌雄同体的进化中发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信