Amber N. Hafeez, Laetitia Chartrain, Cong Feng
, Florence Cambon, Martha Clarke, Simon Griffiths, Sadiye Hayta, Mei Jiang
, Beat Keller, Rachel Kirby, Markus C. Kolodziej, Oliver R. Powell, Mark A. Smedley, Burkhard Steuernagel, Wenfei Xian
, Luzie U. Wingen, Shifeng Cheng
, Cyrille Saintenac, Brande B. H. Wulff, James K. M. Brown
{"title":"Septoria tritici blotch resistance gene Stb15 encodes a lectin receptor-like kinase","authors":"Amber N. Hafeez, Laetitia Chartrain, Cong Feng \n , Florence Cambon, Martha Clarke, Simon Griffiths, Sadiye Hayta, Mei Jiang \n , Beat Keller, Rachel Kirby, Markus C. Kolodziej, Oliver R. Powell, Mark A. Smedley, Burkhard Steuernagel, Wenfei Xian \n , Luzie U. Wingen, Shifeng Cheng \n , Cyrille Saintenac, Brande B. H. Wulff, James K. M. Brown","doi":"10.1038/s41477-025-01920-2","DOIUrl":null,"url":null,"abstract":"Septoria tritici blotch (STB), caused by the Dothideomycete fungus Zymoseptoria tritici, is one of the most damaging diseases of bread wheat (Triticum aestivum)1 and the target of costly fungicide applications2. In line with the fungus’s apoplastic lifestyle, STB resistance genes isolated to date encode receptor-like kinases (RLKs) including a wall-associated kinase (Stb6) and a cysteine-rich kinase (Stb16q)3,4. Here we used genome-wide association studies on a diverse panel of 300 whole-genome shotgun-sequenced wheat landraces (WatSeq consortium5) to identify a 99-kb region containing six candidates for the Stb15 resistance gene. Mutagenesis and transgenesis confirmed a gene encoding an intronless G-type lectin RLK as Stb15. The characterization of Stb15 exemplifies the unexpected diversity of RLKs conferring Z. tritici resistance in wheat. Stb15 provides resistance to Septoria tritici blotch in wheat and encodes a G-type lectin receptor-like kinase. The three cloned Stb genes, which are effective against different pathogen isolates, encode diverse receptor-like kinases with extracellular domains potentially involved in sugar binding.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 3","pages":"410-420"},"PeriodicalIF":15.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-025-01920-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-025-01920-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Septoria tritici blotch (STB), caused by the Dothideomycete fungus Zymoseptoria tritici, is one of the most damaging diseases of bread wheat (Triticum aestivum)1 and the target of costly fungicide applications2. In line with the fungus’s apoplastic lifestyle, STB resistance genes isolated to date encode receptor-like kinases (RLKs) including a wall-associated kinase (Stb6) and a cysteine-rich kinase (Stb16q)3,4. Here we used genome-wide association studies on a diverse panel of 300 whole-genome shotgun-sequenced wheat landraces (WatSeq consortium5) to identify a 99-kb region containing six candidates for the Stb15 resistance gene. Mutagenesis and transgenesis confirmed a gene encoding an intronless G-type lectin RLK as Stb15. The characterization of Stb15 exemplifies the unexpected diversity of RLKs conferring Z. tritici resistance in wheat. Stb15 provides resistance to Septoria tritici blotch in wheat and encodes a G-type lectin receptor-like kinase. The three cloned Stb genes, which are effective against different pathogen isolates, encode diverse receptor-like kinases with extracellular domains potentially involved in sugar binding.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.