Positive effects of species mixing on biodiversity of understory plant communities and soil health in forest plantations

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jiahuan Guo, Daniel Kneeshaw, Changhui Peng, Yaoxing Wu, Lei Feng, Xinjing Qu, Weifeng Wang, Chang Pan, Huili Feng
{"title":"Positive effects of species mixing on biodiversity of understory plant communities and soil health in forest plantations","authors":"Jiahuan Guo, Daniel Kneeshaw, Changhui Peng, Yaoxing Wu, Lei Feng, Xinjing Qu, Weifeng Wang, Chang Pan, Huili Feng","doi":"10.1073/pnas.2418090122","DOIUrl":null,"url":null,"abstract":"Mixed-species plantations are increasingly recognized for their potential to maintain forest biodiversity and soil health; however, a comprehensive assessment of their global effectiveness is lacking. To fill this knowledge gap, we conducted a meta-analysis of 7,045 paired observations between mixed-species and monoculture plantations, derived from 311 studies across diverse forest ecosystems worldwide. Our results show that mixed-species plantations significantly increased understory plant biomass, cover, and species richness by 32.6%, 55.4%, and 32.2%, respectively, compared to monocultures. Furthermore, the Shannon and Pielou diversity indices increased by 28.2% and 8.6%, respectively, and the Simpson index increased by 9.6%. When understory shrub and herbaceous species were considered separately, species mixing had significantly positive effects on shrub diversity but had no effect on herbaceous diversity. Moreover, mixed-species plantations markedly improved soil physical and chemical properties compared to monocultures. These improvements include increases in soil nutrient content (9.6 to 17.8%) and nutrient availability (14.7 to 33.5%), soil microbial biomass (17.2 to 28.8%), and soil carbon sequestration (7.2 to 19.9%). These enhancements were particularly pronounced in plantations that included legumes. Our findings reveal that the benefits of species mixing are influenced by climatic conditions, geographic location, and stand age, with the most substantial effects observed in temperate regions and mature stands. This study underscores the critical role of mixed-species plantations in promoting sustainable forest management and mitigating the ecological limitations of monocultures.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"22 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2418090122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Mixed-species plantations are increasingly recognized for their potential to maintain forest biodiversity and soil health; however, a comprehensive assessment of their global effectiveness is lacking. To fill this knowledge gap, we conducted a meta-analysis of 7,045 paired observations between mixed-species and monoculture plantations, derived from 311 studies across diverse forest ecosystems worldwide. Our results show that mixed-species plantations significantly increased understory plant biomass, cover, and species richness by 32.6%, 55.4%, and 32.2%, respectively, compared to monocultures. Furthermore, the Shannon and Pielou diversity indices increased by 28.2% and 8.6%, respectively, and the Simpson index increased by 9.6%. When understory shrub and herbaceous species were considered separately, species mixing had significantly positive effects on shrub diversity but had no effect on herbaceous diversity. Moreover, mixed-species plantations markedly improved soil physical and chemical properties compared to monocultures. These improvements include increases in soil nutrient content (9.6 to 17.8%) and nutrient availability (14.7 to 33.5%), soil microbial biomass (17.2 to 28.8%), and soil carbon sequestration (7.2 to 19.9%). These enhancements were particularly pronounced in plantations that included legumes. Our findings reveal that the benefits of species mixing are influenced by climatic conditions, geographic location, and stand age, with the most substantial effects observed in temperate regions and mature stands. This study underscores the critical role of mixed-species plantations in promoting sustainable forest management and mitigating the ecological limitations of monocultures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信