How circuits for habits are formed within the basal ganglia

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sten Grillner
{"title":"How circuits for habits are formed within the basal ganglia","authors":"Sten Grillner","doi":"10.1073/pnas.2423068122","DOIUrl":null,"url":null,"abstract":"Recent findings show that stereotyped movement sequences (habits) need the cortex in the learning phase, but after learning, the cortex can be inactivated, and the movement still be performed flawlessly. The motor program is dependent on the sensorimotor part of the dorsolateral striatum (DLS) and on synaptic plasticity in the thalamostriatal synapses. New findings from several laboratories have revealed a highly precise spatially interactive organization within the basal ganglia [DLS, substantia nigra pars reticulata (SNr), and the thalamostriatal parafascicular nucleus (PF)] and with precise input from the cortex. The DLS-SNr-PF-DLS loop is subdivided into many parallel loops. I now propose that these parallel loops can act to reinforce the activity of the different striatal projection neurons in the DLS that take part and that the synaptic transmission in DLS becomes potentiated each time the motor sequence is performed successfully, if rewarded through a dopamine burst. It is argued that after learning the DLS-SNr-PF-DLS loop can operate in isolation.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"23 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2423068122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Recent findings show that stereotyped movement sequences (habits) need the cortex in the learning phase, but after learning, the cortex can be inactivated, and the movement still be performed flawlessly. The motor program is dependent on the sensorimotor part of the dorsolateral striatum (DLS) and on synaptic plasticity in the thalamostriatal synapses. New findings from several laboratories have revealed a highly precise spatially interactive organization within the basal ganglia [DLS, substantia nigra pars reticulata (SNr), and the thalamostriatal parafascicular nucleus (PF)] and with precise input from the cortex. The DLS-SNr-PF-DLS loop is subdivided into many parallel loops. I now propose that these parallel loops can act to reinforce the activity of the different striatal projection neurons in the DLS that take part and that the synaptic transmission in DLS becomes potentiated each time the motor sequence is performed successfully, if rewarded through a dopamine burst. It is argued that after learning the DLS-SNr-PF-DLS loop can operate in isolation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信