Spatio-temporal pattern formation of living organisms at the edge of chaos

Johannes Werner, Hartmut Arndt
{"title":"Spatio-temporal pattern formation of living organisms at the edge of chaos","authors":"Johannes Werner, Hartmut Arndt","doi":"10.1093/ismejo/wraf050","DOIUrl":null,"url":null,"abstract":"Understanding spatio-temporal dynamics is essential for predicting how populations fluctuate over time and space. Theoretical models have highlighted the ecological complexity of spatio-temporal dynamics, which can lead to the emergence of complex patterns, including nonlinear dynamics and chaotic behavior, important mechanisms for maintaining of biodiversity. However, these dynamics are difficult to observe experimentally due to a lack of temporal and spatial resolution. Here we show that even a single-species system exhibits complex spatio-temporal patterns without external forcing where order and chaos coexist (edge of chaos). Automated analyses of experimental dynamics of cells of a ciliate on a microfluidic chip environment with 50 interconnected patches documented pattern formation, including chaos-like dynamics, using several analytical methods. Different initial conditions caused changes in patterns, revealing the complexity and principal unpredictability of self-organized pattern formation. A model containing the stochastic fluctuations of the experiment verified the deterministic nature of patterns. The results show the intrinsic complexity of ecological systems, challenging predictions in nature conservation. Our results bridge the gap between theoretical models and experimental observations, offering new insights into the fundamental nature of living systems and their spatio-temporal organization.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding spatio-temporal dynamics is essential for predicting how populations fluctuate over time and space. Theoretical models have highlighted the ecological complexity of spatio-temporal dynamics, which can lead to the emergence of complex patterns, including nonlinear dynamics and chaotic behavior, important mechanisms for maintaining of biodiversity. However, these dynamics are difficult to observe experimentally due to a lack of temporal and spatial resolution. Here we show that even a single-species system exhibits complex spatio-temporal patterns without external forcing where order and chaos coexist (edge of chaos). Automated analyses of experimental dynamics of cells of a ciliate on a microfluidic chip environment with 50 interconnected patches documented pattern formation, including chaos-like dynamics, using several analytical methods. Different initial conditions caused changes in patterns, revealing the complexity and principal unpredictability of self-organized pattern formation. A model containing the stochastic fluctuations of the experiment verified the deterministic nature of patterns. The results show the intrinsic complexity of ecological systems, challenging predictions in nature conservation. Our results bridge the gap between theoretical models and experimental observations, offering new insights into the fundamental nature of living systems and their spatio-temporal organization.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信