Widespread ecological novelty across the terrestrial biosphere

IF 13.9 1区 生物学 Q1 ECOLOGY
Matthew R. Kerr, Alejandro Ordonez, Felix Riede, Joe Atkinson, Elena A. Pearce, Maciej Sykut, Jonas Trepel, Jens-Christian Svenning
{"title":"Widespread ecological novelty across the terrestrial biosphere","authors":"Matthew R. Kerr, Alejandro Ordonez, Felix Riede, Joe Atkinson, Elena A. Pearce, Maciej Sykut, Jonas Trepel, Jens-Christian Svenning","doi":"10.1038/s41559-025-02662-2","DOIUrl":null,"url":null,"abstract":"<p>Human activities have transformed many wild and semiwild ecosystems into novel states without historical precedent. Without knowing the current distribution of what drives the emergence of such novelty, predicting future ecosystem states and informing conservation and restoration policies remain difficult. Here we construct global maps of three key drivers generating novel conditions—climate change, defaunation and floristic disruption—and summarize them to a measure of total novelty exposure. We show that the terrestrial biosphere is widely exposed to novel conditions, with 58% of the total area exposed to high levels of total novelty. All climatic regions and biomes are exposed to substantial levels of novelty. Relative contributions of individual drivers vary between climatic regions, with climate changes and defaunation the largest contributors globally. Protected areas and key biodiversity areas, whether formally protected or not, have similar exposure, with high total novelty experienced in 58% of cells inside protected areas and 56% inside key biodiversity areas. Our results highlight the importance of investigating ecosystem and biodiversity responses to rising ecological novelty for informing actions towards biosphere stewardship.</p>","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"10 1","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41559-025-02662-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human activities have transformed many wild and semiwild ecosystems into novel states without historical precedent. Without knowing the current distribution of what drives the emergence of such novelty, predicting future ecosystem states and informing conservation and restoration policies remain difficult. Here we construct global maps of three key drivers generating novel conditions—climate change, defaunation and floristic disruption—and summarize them to a measure of total novelty exposure. We show that the terrestrial biosphere is widely exposed to novel conditions, with 58% of the total area exposed to high levels of total novelty. All climatic regions and biomes are exposed to substantial levels of novelty. Relative contributions of individual drivers vary between climatic regions, with climate changes and defaunation the largest contributors globally. Protected areas and key biodiversity areas, whether formally protected or not, have similar exposure, with high total novelty experienced in 58% of cells inside protected areas and 56% inside key biodiversity areas. Our results highlight the importance of investigating ecosystem and biodiversity responses to rising ecological novelty for informing actions towards biosphere stewardship.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature ecology & evolution
Nature ecology & evolution Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍: Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信