Computational investigation of heat transfer and fluid flow in a NEPCM-filled cavity with sinusoidal porous layer: Influence of magnetic field and exothermic reactions
Mohammed Azeez Alomari , Ahmed M. Hassan , Hawkar Qsim Birdawod , Faris Alqurashi , Mujtaba A. Flayyih , Abdellatif M. Sadeq
{"title":"Computational investigation of heat transfer and fluid flow in a NEPCM-filled cavity with sinusoidal porous layer: Influence of magnetic field and exothermic reactions","authors":"Mohammed Azeez Alomari , Ahmed M. Hassan , Hawkar Qsim Birdawod , Faris Alqurashi , Mujtaba A. Flayyih , Abdellatif M. Sadeq","doi":"10.1016/j.csite.2025.106013","DOIUrl":null,"url":null,"abstract":"<div><div>This pioneering study presents a novel investigation of the complex interplay of magnetohydrodynamic (MHD) free convection, double-diffusion, and exothermic reactions in a square cavity with a unique configuration. A corrugated porous layer with a thickness of 0.2L adheres to the left wall. The cavity is partially filled with a nano-enhanced phase change material (NEPCM) suspended porous medium. This innovative design combines the benefits of corrugated surfaces, NEPCMs, and magnetic field control for enhanced thermal management. Using the Galerkin finite element method and PARDISO solver, a comprehensive numerical analysis investigates the effects of various parameters on heat transfer, mass transfer, and entropy generation. These parameters include Frank-Kameneteskii number (<span><math><mrow><mn>0</mn><mo>≤</mo><mi>F</mi><mi>K</mi><mo>≤</mo><mn>2.5</mn></mrow></math></span>), Darcy number (<span><math><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup><mo>≤</mo><mi>D</mi><mi>a</mi><mo>≤</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>), Rayleigh number (<span><math><mrow><msup><mn>10</mn><mn>3</mn></msup><mo>≤</mo><mi>R</mi><mi>a</mi><mo>≤</mo><msup><mn>10</mn><mn>5</mn></msup></mrow></math></span>), buoyancy ratio (<span><math><mrow><mn>1</mn><mo>≤</mo><mi>N</mi><mi>z</mi><mo>≤</mo><mn>5</mn></mrow></math></span>), Lewis number (<span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>L</mi><mi>e</mi><mo>≤</mo><mn>10</mn></mrow></math></span>), fusion temperature (<span><math><mrow><mn>0.1</mn><mo>≤</mo><msub><mi>θ</mi><mi>f</mi></msub><mo>≤</mo><mn>0.9</mn></mrow></math></span>), Stefan number (<span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>S</mi><mi>t</mi><mi>e</mi><mo>≤</mo><mn>0.9</mn></mrow></math></span>), magnetic field inclination (<span><math><mrow><mn>0</mn><mo>°</mo><mo>≤</mo><mi>γ</mi><mo>≤</mo><mn>90</mn><mo>°</mo></mrow></math></span>), Hartmann number (<span><math><mrow><mn>0</mn><mo>≤</mo><mi>H</mi><mi>a</mi><mo>≤</mo><mn>50</mn></mrow></math></span>), and NEPCM concentration (<span><math><mrow><mn>0.01</mn><mo>≤</mo><mi>ϕ</mi><mo>≤</mo><mn>0.035</mn></mrow></math></span>). Results demonstrate that increasing Ra from <span><math><mrow><msup><mn>10</mn><mn>3</mn></msup></mrow></math></span> to <span><math><mrow><msup><mn>10</mn><mn>5</mn></msup></mrow></math></span> enhances the average Nusselt number by 324 % at <span><math><mrow><mi>F</mi><mi>K</mi><mo>=</mo><mn>1</mn></mrow></math></span>. Nanoparticle volume fraction significantly improves heat transfer, with a 67.6 % increase in Nusselt number as <span><math><mrow><mi>ϕ</mi></mrow></math></span> rises from 0.01 to 0.035. The magnetic field suppresses convection, reducing Nusselt and Sherwood numbers by 57.8 % and 27.4 %, respectively, as <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> increases from 0 to 50. Entropy generation decreases by 84 % under the same conditions. These findings are particularly relevant for designing advanced heat exchangers, solar thermal systems, and electronic cooling applications, where precise control of heat transfer and thermal energy storage is crucial.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"69 ","pages":"Article 106013"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25002734","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This pioneering study presents a novel investigation of the complex interplay of magnetohydrodynamic (MHD) free convection, double-diffusion, and exothermic reactions in a square cavity with a unique configuration. A corrugated porous layer with a thickness of 0.2L adheres to the left wall. The cavity is partially filled with a nano-enhanced phase change material (NEPCM) suspended porous medium. This innovative design combines the benefits of corrugated surfaces, NEPCMs, and magnetic field control for enhanced thermal management. Using the Galerkin finite element method and PARDISO solver, a comprehensive numerical analysis investigates the effects of various parameters on heat transfer, mass transfer, and entropy generation. These parameters include Frank-Kameneteskii number (), Darcy number (), Rayleigh number (), buoyancy ratio (), Lewis number (), fusion temperature (), Stefan number (), magnetic field inclination (), Hartmann number (), and NEPCM concentration (). Results demonstrate that increasing Ra from to enhances the average Nusselt number by 324 % at . Nanoparticle volume fraction significantly improves heat transfer, with a 67.6 % increase in Nusselt number as rises from 0.01 to 0.035. The magnetic field suppresses convection, reducing Nusselt and Sherwood numbers by 57.8 % and 27.4 %, respectively, as increases from 0 to 50. Entropy generation decreases by 84 % under the same conditions. These findings are particularly relevant for designing advanced heat exchangers, solar thermal systems, and electronic cooling applications, where precise control of heat transfer and thermal energy storage is crucial.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.