Han Wei Tian, Ya Lun Sun, Xin Ge Zhang, Xin Li, Qian Zhu, Chao Song, Cheng-Wei Qiu, Tie Jun Cui, Wei Xiang Jiang
{"title":"Solar-powered light-modulated microwave programmable metasurface for sustainable wireless communications","authors":"Han Wei Tian, Ya Lun Sun, Xin Ge Zhang, Xin Li, Qian Zhu, Chao Song, Cheng-Wei Qiu, Tie Jun Cui, Wei Xiang Jiang","doi":"10.1038/s41467-025-57923-2","DOIUrl":null,"url":null,"abstract":"<p>Programmable metasurface holds big promise in wireless communications by virtue of its powerful capability in controlling electromagnetic waves. However, challenges exist for the programmable metasurface in achieving self-sufficient renewable energy supply and flexible and reliable multi-domain information transmissions. Here, we report a solar-powered light-modulated microwave programmable metasurface (SLMPM) by integrating a photovoltaic module to acquire information from modulated light and energy from sunlight simultaneously. Such an SLMPM enables direct, real-time, and reliable information transmissions from light to microwave domains under direct sunlight exposure, with the flexibility to implement various modulation schemes. Its low power consumption and on-board energy harvesting capability allows for 24 hours of light-to-microwave information transmission with 8 hours of sole sunlight energy input. A hybrid wireless communication system for real-time image transmission is demonstrated to show the outstanding features of SLMPM. We believe that SLMPM can contribute to the sustainable advancement of future wireless communications, rendering them more cost-effective, energy-efficient, environment-friendly, and ubiquitous.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"17 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57923-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Programmable metasurface holds big promise in wireless communications by virtue of its powerful capability in controlling electromagnetic waves. However, challenges exist for the programmable metasurface in achieving self-sufficient renewable energy supply and flexible and reliable multi-domain information transmissions. Here, we report a solar-powered light-modulated microwave programmable metasurface (SLMPM) by integrating a photovoltaic module to acquire information from modulated light and energy from sunlight simultaneously. Such an SLMPM enables direct, real-time, and reliable information transmissions from light to microwave domains under direct sunlight exposure, with the flexibility to implement various modulation schemes. Its low power consumption and on-board energy harvesting capability allows for 24 hours of light-to-microwave information transmission with 8 hours of sole sunlight energy input. A hybrid wireless communication system for real-time image transmission is demonstrated to show the outstanding features of SLMPM. We believe that SLMPM can contribute to the sustainable advancement of future wireless communications, rendering them more cost-effective, energy-efficient, environment-friendly, and ubiquitous.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.