Identifying species traits that predict vulnerability to climate change.

Cambridge prisms. Extinction Pub Date : 2024-12-05 eCollection Date: 2024-01-01 DOI:10.1017/ext.2024.24
Damien A Fordham
{"title":"Identifying species traits that predict vulnerability to climate change.","authors":"Damien A Fordham","doi":"10.1017/ext.2024.24","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately predicting the vulnerabilities of species to climate change requires a more detailed understanding of the functional and life-history traits that make some species more susceptible to declines and extinctions in shifting climates. This is because existing trait-based correlates of extinction risk from climate and environmental disturbances vary widely, often being idiosyncratic and context dependent. A powerful solution is to analyse the growing volume of biological data on changes in species ranges and abundances using process-explicit ecological models that run at fine temporal and spatial scales and across large geographical extents. These simulation-based approaches can unpack complex interactions between species' traits and climate and other threats. This enables species-responses to climatic change to be contextualised and integrated into future biodiversity projections and to be used to formulate and assess conservation policy goals. By providing a more complete understanding of the traits and contexts that regulate different responses of species to climate change, these process-driven approaches are likely to result in more certain predictions of the species that are most vulnerable to climate change.</p>","PeriodicalId":520449,"journal":{"name":"Cambridge prisms. Extinction","volume":"2 ","pages":"e21"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge prisms. Extinction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/ext.2024.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately predicting the vulnerabilities of species to climate change requires a more detailed understanding of the functional and life-history traits that make some species more susceptible to declines and extinctions in shifting climates. This is because existing trait-based correlates of extinction risk from climate and environmental disturbances vary widely, often being idiosyncratic and context dependent. A powerful solution is to analyse the growing volume of biological data on changes in species ranges and abundances using process-explicit ecological models that run at fine temporal and spatial scales and across large geographical extents. These simulation-based approaches can unpack complex interactions between species' traits and climate and other threats. This enables species-responses to climatic change to be contextualised and integrated into future biodiversity projections and to be used to formulate and assess conservation policy goals. By providing a more complete understanding of the traits and contexts that regulate different responses of species to climate change, these process-driven approaches are likely to result in more certain predictions of the species that are most vulnerable to climate change.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信