The NERVE-ML (neural engineering reproducibility and validity essentials for machine learning) checklist: ensuring machine learning advances neural engineering.

David E Carlson, Ricardo Chavarriaga, Yiling Liu, Fabien Lotte, Bao-Liang Lu
{"title":"The NERVE-ML (neural engineering reproducibility and validity essentials for machine learning) checklist: ensuring machine learning advances neural engineering<sup />.","authors":"David E Carlson, Ricardo Chavarriaga, Yiling Liu, Fabien Lotte, Bao-Liang Lu","doi":"10.1088/1741-2552/adbfbd","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Machine learning's (MLs) ability to capture intricate patterns makes it vital in neural engineering research. With its increasing use, ensuring the validity and reproducibility of ML methods is critical. Unfortunately, this has not always been the case in practice, as there have been recent retractions across various scientific fields due to the misuse of ML methods and validation procedures. To address these concerns, we propose the first version of the neural engineering reproducibility and validity essentials for ML (NERVE-ML) checklist, a framework designed to promote the transparent, reproducible, and valid application of ML in neural engineering.<i>Approach.</i>We highlight some of the unique challenges of model validation in neural engineering, including the difficulties from limited subject numbers, repeated or non-independent samples, and high subject heterogeneity. Through detailed case studies, we demonstrate how different validation approaches can lead to divergent scientific conclusions, highlighting the importance of selecting appropriate procedures guided by the NERVE-ML checklist. Effectively addressing these challenges and properly scoping scientific conclusions will ensure that ML contributes to, rather than hinders, progress in neural engineering.<i>Main results.</i>Our case studies demonstrate that improper validation approaches can result in flawed studies or overclaimed scientific conclusions, complicating the scientific discourse. The NERVE-ML checklist effectively addresses these concerns by providing guidelines to ensure that ML approaches in neural engineering are reproducible and lead to valid scientific conclusions.<i>Significance.</i>By effectively addressing these challenges and properly scoping scientific conclusions guided by the NERVE-ML checklist, we aim to help pave the way for a future where ML reliably enhances the quality and impact of neural engineering research.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948487/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adbfbd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Machine learning's (MLs) ability to capture intricate patterns makes it vital in neural engineering research. With its increasing use, ensuring the validity and reproducibility of ML methods is critical. Unfortunately, this has not always been the case in practice, as there have been recent retractions across various scientific fields due to the misuse of ML methods and validation procedures. To address these concerns, we propose the first version of the neural engineering reproducibility and validity essentials for ML (NERVE-ML) checklist, a framework designed to promote the transparent, reproducible, and valid application of ML in neural engineering.Approach.We highlight some of the unique challenges of model validation in neural engineering, including the difficulties from limited subject numbers, repeated or non-independent samples, and high subject heterogeneity. Through detailed case studies, we demonstrate how different validation approaches can lead to divergent scientific conclusions, highlighting the importance of selecting appropriate procedures guided by the NERVE-ML checklist. Effectively addressing these challenges and properly scoping scientific conclusions will ensure that ML contributes to, rather than hinders, progress in neural engineering.Main results.Our case studies demonstrate that improper validation approaches can result in flawed studies or overclaimed scientific conclusions, complicating the scientific discourse. The NERVE-ML checklist effectively addresses these concerns by providing guidelines to ensure that ML approaches in neural engineering are reproducible and lead to valid scientific conclusions.Significance.By effectively addressing these challenges and properly scoping scientific conclusions guided by the NERVE-ML checklist, we aim to help pave the way for a future where ML reliably enhances the quality and impact of neural engineering research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信