Yida Dong, Li Zheng, Weihua Pei, Xiaorong Gao, Yijun Wang
{"title":"A 240-target VEP-based BCI system employing narrow-band random sequences.","authors":"Yida Dong, Li Zheng, Weihua Pei, Xiaorong Gao, Yijun Wang","doi":"10.1088/1741-2552/adbfc1","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>In the field of brain-computer interface (BCI), achieving high information transfer rates (ITR) with a large number of targets remains a challenge. This study aims to address this issue by developing a novel code-modulated visual evoked potential (c-VEP) BCI system capable of handling an extensive instruction set while maintaining high performance.<i>Approach</i>. We propose a c-VEP BCI system that employs narrow-band random sequences as visual stimuli and utilizes a convolutional neural network (CNN)-based EEG2Code decoding algorithm. This algorithm predicts corresponding stimulus sequences from EEG data and achieves efficient and accurate classification.<i>Main results.</i>Offline experiments which conducted in a sequential paradigm, resulted in an average accuracy of 87.66% and a simulated ITR of 260.14 bits/min. In online experiments, the system demonstrated an accuracy of 76.27% and an ITR of 213.80 bits/min in a cued spelling task.<i>Significance.</i>This work represents an advancement in c-VEP BCI systems, offering one of the largest known instruction set in VEP-based BCIs and demonstrating robust performance metrics. The proposed system is potential for more practical and efficient BCI applications.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adbfc1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.In the field of brain-computer interface (BCI), achieving high information transfer rates (ITR) with a large number of targets remains a challenge. This study aims to address this issue by developing a novel code-modulated visual evoked potential (c-VEP) BCI system capable of handling an extensive instruction set while maintaining high performance.Approach. We propose a c-VEP BCI system that employs narrow-band random sequences as visual stimuli and utilizes a convolutional neural network (CNN)-based EEG2Code decoding algorithm. This algorithm predicts corresponding stimulus sequences from EEG data and achieves efficient and accurate classification.Main results.Offline experiments which conducted in a sequential paradigm, resulted in an average accuracy of 87.66% and a simulated ITR of 260.14 bits/min. In online experiments, the system demonstrated an accuracy of 76.27% and an ITR of 213.80 bits/min in a cued spelling task.Significance.This work represents an advancement in c-VEP BCI systems, offering one of the largest known instruction set in VEP-based BCIs and demonstrating robust performance metrics. The proposed system is potential for more practical and efficient BCI applications.