[Integration of large language models into the clinic : Revolution in analysing and processing patient data to increase efficiency and quality in radiology].

Radiologie (Heidelberg, Germany) Pub Date : 2025-04-01 Epub Date: 2025-03-12 DOI:10.1007/s00117-025-01431-3
Philipp Arnold, Maurice Henkel, Fabian Bamberg, Elmar Kotter
{"title":"[Integration of large language models into the clinic : Revolution in analysing and processing patient data to increase efficiency and quality in radiology].","authors":"Philipp Arnold, Maurice Henkel, Fabian Bamberg, Elmar Kotter","doi":"10.1007/s00117-025-01431-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Large Language Models (LLMs) like ChatGPT, Llama and Claude are transforming healthcare by interpreting complex text, extracting information, and providing guideline-based support. Radiology, with its high patient volume and digital workflows, is a ideal field for LLM integration.</p><p><strong>Objective: </strong>Assessment of the potential of LLMs to enhance efficiency, standardization, and decision support in radiology, while addressing ethical and regulatory challenges.</p><p><strong>Material and methods: </strong>Pilot studies at Freiburg and Basel university hospitals evaluated local LLM systems for tasks like prior report summarization and guideline-driven reporting. Integration with Picture Archiving and Communication System (PACS) and Electronic Health Record (EHR) systems was achieved via Digital Imaging and Communications in Medicine (DICOM) and Fast Healthcare Interoperability Resources (FHIR) standards. Metrics included time savings, compliance with the European Union (EU) Artificial Intelligence (AI) Act, and user acceptance.</p><p><strong>Results: </strong>LLMs demonstrate significant potential as a support tool for radiologists in clinical practice by reducing reporting times, automating routine tasks, and ensuring consistent, high-quality results. They also support interdisciplinary workflows (e.g., tumor boards) and meet data protection requirements when locally implemented.</p><p><strong>Discussion: </strong>Local LLM systems are feasible and beneficial in radiology, enhancing efficiency and diagnostic quality. Future work should refine transparency, expand applications, and ensure LLMs complement medical expertise while adhering to ethical and legal standards.</p>","PeriodicalId":74635,"journal":{"name":"Radiologie (Heidelberg, Germany)","volume":" ","pages":"243-248"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00117-025-01431-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Large Language Models (LLMs) like ChatGPT, Llama and Claude are transforming healthcare by interpreting complex text, extracting information, and providing guideline-based support. Radiology, with its high patient volume and digital workflows, is a ideal field for LLM integration.

Objective: Assessment of the potential of LLMs to enhance efficiency, standardization, and decision support in radiology, while addressing ethical and regulatory challenges.

Material and methods: Pilot studies at Freiburg and Basel university hospitals evaluated local LLM systems for tasks like prior report summarization and guideline-driven reporting. Integration with Picture Archiving and Communication System (PACS) and Electronic Health Record (EHR) systems was achieved via Digital Imaging and Communications in Medicine (DICOM) and Fast Healthcare Interoperability Resources (FHIR) standards. Metrics included time savings, compliance with the European Union (EU) Artificial Intelligence (AI) Act, and user acceptance.

Results: LLMs demonstrate significant potential as a support tool for radiologists in clinical practice by reducing reporting times, automating routine tasks, and ensuring consistent, high-quality results. They also support interdisciplinary workflows (e.g., tumor boards) and meet data protection requirements when locally implemented.

Discussion: Local LLM systems are feasible and beneficial in radiology, enhancing efficiency and diagnostic quality. Future work should refine transparency, expand applications, and ensure LLMs complement medical expertise while adhering to ethical and legal standards.

[将大型语言模型集成到临床:分析和处理患者数据以提高放射学效率和质量的革命]。
背景:像ChatGPT、Llama和Claude这样的大型语言模型(llm)正在通过解释复杂的文本、提取信息和提供基于指南的支持来改变医疗保健。放射学具有高患者量和数字化工作流程,是LLM集成的理想领域。目的:评估法学硕士在提高放射学效率、标准化和决策支持方面的潜力,同时解决伦理和监管方面的挑战。材料和方法:在弗莱堡和巴塞尔大学医院进行的试点研究评估了当地法学硕士系统的任务,如事先报告总结和指导方针驱动的报告。通过医学数字成像和通信(DICOM)和快速医疗互操作性资源(FHIR)标准,实现了与图像存档和通信系统(PACS)和电子健康记录(EHR)系统的集成。指标包括节省时间、遵守欧盟(EU)人工智能(AI)法案以及用户接受度。结果:法学硕士通过减少报告时间、自动化常规任务和确保一致、高质量的结果,在临床实践中展示了作为放射科医生支持工具的巨大潜力。它们还支持跨学科工作流程(例如,肿瘤委员会),并在本地实施时满足数据保护要求。讨论:局部LLM系统在放射学中是可行和有益的,提高了效率和诊断质量。未来的工作应提高透明度,扩大应用范围,并确保法学硕士在遵守道德和法律标准的同时补充医学专业知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信