Analysis of functional connectivity changes from childhood to old age: A study using HCP-D, HCP-YA, and HCP-A datasets.

Imaging neuroscience (Cambridge, Mass.) Pub Date : 2025-03-06 eCollection Date: 2025-03-01 DOI:10.1162/imag_a_00503
Yaotian Wang, Shuoran Li, Jie He, Lingyi Peng, Qiaochu Wang, Xu Zou, Dana L Tudorascu, David J Schaeffer, Lauren Schaeffer, Diego Szczupak, Jung Eun Park, Stacey J Sukoff Rizzo, Gregory W Carter, Afonso C Silva, Tingting Zhang
{"title":"Analysis of functional connectivity changes from childhood to old age: A study using HCP-D, HCP-YA, and HCP-A datasets.","authors":"Yaotian Wang, Shuoran Li, Jie He, Lingyi Peng, Qiaochu Wang, Xu Zou, Dana L Tudorascu, David J Schaeffer, Lauren Schaeffer, Diego Szczupak, Jung Eun Park, Stacey J Sukoff Rizzo, Gregory W Carter, Afonso C Silva, Tingting Zhang","doi":"10.1162/imag_a_00503","DOIUrl":null,"url":null,"abstract":"<p><p>We present a new clustering-enabled regression approach to investigate how functional connectivity (FC) of the entire brain changes from childhood to old age. By applying this method to resting-state functional magnetic resonance imaging data aggregated from three Human Connectome Project studies, we cluster brain regions that undergo identical age-related changes in FC and reveal diverse patterns of these changes for different region clusters. While most brain connections between pairs of regions show minimal yet statistically significant FC changes with age, only a tiny proportion of connections exhibit practically significant age-related changes in FC. Among these connections, FC between region clusters from the same functional network tends to decrease over time, whereas FC between region clusters from different networks demonstrates various patterns of age-related changes. Moreover, our research uncovers sex-specific trends in FC changes. Females show much higher FC mainly within the default mode network, whereas males display higher FC across several more brain networks. These findings underscore the complexity and heterogeneity of FC changes in the brain throughout the lifespan.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/imag_a_00503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new clustering-enabled regression approach to investigate how functional connectivity (FC) of the entire brain changes from childhood to old age. By applying this method to resting-state functional magnetic resonance imaging data aggregated from three Human Connectome Project studies, we cluster brain regions that undergo identical age-related changes in FC and reveal diverse patterns of these changes for different region clusters. While most brain connections between pairs of regions show minimal yet statistically significant FC changes with age, only a tiny proportion of connections exhibit practically significant age-related changes in FC. Among these connections, FC between region clusters from the same functional network tends to decrease over time, whereas FC between region clusters from different networks demonstrates various patterns of age-related changes. Moreover, our research uncovers sex-specific trends in FC changes. Females show much higher FC mainly within the default mode network, whereas males display higher FC across several more brain networks. These findings underscore the complexity and heterogeneity of FC changes in the brain throughout the lifespan.

从童年到老年功能连接变化分析:使用HCP-D、HCP-YA和HCP-A数据集的研究
我们提出了一种新的聚类回归方法来研究整个大脑的功能连接(FC)如何从童年到老年变化。通过将该方法应用于从三个人类连接组项目研究中收集的静息状态功能磁共振成像数据,我们对经历相同年龄相关FC变化的大脑区域进行了聚类,并揭示了这些变化在不同区域聚类中的不同模式。虽然大多数脑区对之间的连接随着年龄的增长显示出最小但统计上显著的FC变化,但只有一小部分连接在FC中显示出实际显著的年龄相关变化。在这些连接中,来自同一功能网络的区域集群之间的FC随时间的推移而减少,而来自不同网络的区域集群之间的FC则表现出不同的年龄相关变化模式。此外,我们的研究揭示了FC变化的性别特异性趋势。女性主要在默认模式网络中表现出更高的FC,而男性在更多的大脑网络中表现出更高的FC。这些发现强调了整个生命周期中大脑FC变化的复杂性和异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信