Proteome-wide assessment of differential missense variant clustering in neurodevelopmental disorders and cancer.

IF 11.1 Q1 CELL BIOLOGY
Jeffrey K Ng, Yilin Chen, Titilope M Akinwe, Hillary B Heins, Elvisa Mehinovic, Yoonhoo Chang, David H Gutmann, Christina A Gurnett, Zachary L Payne, Juana G Manuel, Rachel Karchin, Tychele N Turner
{"title":"Proteome-wide assessment of differential missense variant clustering in neurodevelopmental disorders and cancer.","authors":"Jeffrey K Ng, Yilin Chen, Titilope M Akinwe, Hillary B Heins, Elvisa Mehinovic, Yoonhoo Chang, David H Gutmann, Christina A Gurnett, Zachary L Payne, Juana G Manuel, Rachel Karchin, Tychele N Turner","doi":"10.1016/j.xgen.2025.100807","DOIUrl":null,"url":null,"abstract":"<p><p>Prior studies examining genomic variants suggest that some proteins contribute to both neurodevelopmental disorders (NDDs) and cancer. While there are several potential etiologies, here, we hypothesize that missense variation in proteins occurs in different clustering patterns, resulting in distinct phenotypic outcomes. This concept was first explored in 1D protein space and expanded using 3D protein structure models. Missense de novo variants were examined from 39,883 families with NDDs and missense somatic variants from 10,543 sequenced tumors covering five The Cancer Genome Atlas (TCGA) cancer types and two Catalog of Somatic Mutations in Cancer (COSMIC) pan-cancer aggregates of tissue types. We find 18 proteins with differential missense variation clustering in NDDs compared to cancers and 19 in cancers relative to NDDs. These proteins may be important for detailed assessments in thinking of future prognostic and therapeutic applications. We establish a framework for interpreting missense patterns in NDDs and cancer, using advances in 3D protein structure prediction.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100807"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prior studies examining genomic variants suggest that some proteins contribute to both neurodevelopmental disorders (NDDs) and cancer. While there are several potential etiologies, here, we hypothesize that missense variation in proteins occurs in different clustering patterns, resulting in distinct phenotypic outcomes. This concept was first explored in 1D protein space and expanded using 3D protein structure models. Missense de novo variants were examined from 39,883 families with NDDs and missense somatic variants from 10,543 sequenced tumors covering five The Cancer Genome Atlas (TCGA) cancer types and two Catalog of Somatic Mutations in Cancer (COSMIC) pan-cancer aggregates of tissue types. We find 18 proteins with differential missense variation clustering in NDDs compared to cancers and 19 in cancers relative to NDDs. These proteins may be important for detailed assessments in thinking of future prognostic and therapeutic applications. We establish a framework for interpreting missense patterns in NDDs and cancer, using advances in 3D protein structure prediction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信