Injectable photosensitive bone cement enhancing angiogenesis and osteogenic differentiation for the treatment of bone nonunion.

IF 6.6 3区 医学 Q1 ENGINEERING, BIOMEDICAL
APL Bioengineering Pub Date : 2025-03-11 eCollection Date: 2025-03-01 DOI:10.1063/5.0246207
Mengnan Wen, Xueqiang Guo, Yan Gong, Fei Xue, Zhenlin Fan, Zhanting Kang, Jixiang Li, Lei Wang, Xiansong Wang, Wenjie Ren
{"title":"Injectable photosensitive bone cement enhancing angiogenesis and osteogenic differentiation for the treatment of bone nonunion.","authors":"Mengnan Wen, Xueqiang Guo, Yan Gong, Fei Xue, Zhenlin Fan, Zhanting Kang, Jixiang Li, Lei Wang, Xiansong Wang, Wenjie Ren","doi":"10.1063/5.0246207","DOIUrl":null,"url":null,"abstract":"<p><p>Nonunion fractures present a significant clinical challenge because of their complex microenvironment, which includes poor vascularization, insufficient osteogenesis, infection, and separation of fracture ends. The current clinical treatments have certain limitations. Inspired by this phenomenon, sandcastle worms secrete adhesive proteins that bind sand grains, shell fragments, and mineral particles, thereby constructing their \"castles.\" In this study, we developed an injectable bone cement using methacryloyl chitosan (CSMA) combined with a specific concentration of oyster shell nanoparticles (OS-np) to treat nonunion fractures. Oyster shells are composed primarily of calcium carbonate, which releases ions that promote angiogenesis and osteogenesis. The <i>in vivo</i> results at 8 weeks showed that the expression of BMP2, RUNX2, and VEGF in the OS-np/CSMA group was increased by 5.47, 4.38, and 3.54 times, respectively, compared to the control group, significantly enhancing vascularization and bone repair in the bone nonunion model. The injectability of the OS-np/CSMA bone cement ensures that it can adapt well to the complex structures of nonunion sites, providing a supportive matrix for new bone formation. Both <i>in vivo</i> and <i>in vitro</i> osteogenesis experiments demonstrated that the OS-np/CSMA bone cement significantly enhanced vascularization and bone repair in nonunion models, which was because of the synergistic effects of ion release and the bioactive properties of the oyster shell nanoparticles. This study highlights the potential of OS-np/CSMA injectable bone cement as a promising treatment strategy for complex nonunion fractures that effectively promotes angiogenesis and osteogenesis.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"9 1","pages":"016114"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0246207","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nonunion fractures present a significant clinical challenge because of their complex microenvironment, which includes poor vascularization, insufficient osteogenesis, infection, and separation of fracture ends. The current clinical treatments have certain limitations. Inspired by this phenomenon, sandcastle worms secrete adhesive proteins that bind sand grains, shell fragments, and mineral particles, thereby constructing their "castles." In this study, we developed an injectable bone cement using methacryloyl chitosan (CSMA) combined with a specific concentration of oyster shell nanoparticles (OS-np) to treat nonunion fractures. Oyster shells are composed primarily of calcium carbonate, which releases ions that promote angiogenesis and osteogenesis. The in vivo results at 8 weeks showed that the expression of BMP2, RUNX2, and VEGF in the OS-np/CSMA group was increased by 5.47, 4.38, and 3.54 times, respectively, compared to the control group, significantly enhancing vascularization and bone repair in the bone nonunion model. The injectability of the OS-np/CSMA bone cement ensures that it can adapt well to the complex structures of nonunion sites, providing a supportive matrix for new bone formation. Both in vivo and in vitro osteogenesis experiments demonstrated that the OS-np/CSMA bone cement significantly enhanced vascularization and bone repair in nonunion models, which was because of the synergistic effects of ion release and the bioactive properties of the oyster shell nanoparticles. This study highlights the potential of OS-np/CSMA injectable bone cement as a promising treatment strategy for complex nonunion fractures that effectively promotes angiogenesis and osteogenesis.

可注射光敏骨水泥促进血管生成和成骨分化治疗骨不连。
不愈合骨折由于其复杂的微环境,包括血管化不良、成骨不足、感染和骨折端分离,给临床带来了重大挑战。目前的临床治疗有一定的局限性。受到这种现象的启发,沙堡蠕虫分泌黏附蛋白,将沙粒、贝壳碎片和矿物颗粒结合在一起,从而构建它们的“城堡”。在这项研究中,我们开发了一种使用甲基丙烯酰壳聚糖(CSMA)与特定浓度的牡蛎壳纳米颗粒(OS-np)联合使用的可注射骨水泥来治疗骨折不愈合。牡蛎壳主要由碳酸钙组成,碳酸钙释放的离子促进血管生成和骨生成。8周体内实验结果显示,与对照组相比,OS-np/CSMA组BMP2、RUNX2和VEGF的表达分别增加了5.47倍、4.38倍和3.54倍,显著增强了骨不连模型的血管化和骨修复。OS-np/CSMA骨水泥的可注射性确保其能够很好地适应骨不连部位的复杂结构,为新骨形成提供支持基质。体内和体外成骨实验均表明,OS-np/CSMA骨水泥显著增强骨不连模型的血管化和骨修复,这是由于离子释放和牡蛎壳纳米颗粒的生物活性特性的协同作用。这项研究强调了OS-np/CSMA可注射骨水泥作为一种有前景的治疗复杂骨不连骨折的策略的潜力,它能有效地促进血管生成和成骨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Bioengineering
APL Bioengineering ENGINEERING, BIOMEDICAL-
CiteScore
9.30
自引率
6.70%
发文量
39
审稿时长
19 weeks
期刊介绍: APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes: -Biofabrication and Bioprinting -Biomedical Materials, Sensors, and Imaging -Engineered Living Systems -Cell and Tissue Engineering -Regenerative Medicine -Molecular, Cell, and Tissue Biomechanics -Systems Biology and Computational Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信