A multi-objective function for deep learning-based automatic energy efficiency power allocation in multicarrier noma system using hybrid heuristic improvement.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chiranjeevi Thokala, Pradnya H Ghare
{"title":"A multi-objective function for deep learning-based automatic energy efficiency power allocation in multicarrier noma system using hybrid heuristic improvement.","authors":"Chiranjeevi Thokala, Pradnya H Ghare","doi":"10.1080/0954898X.2025.2461046","DOIUrl":null,"url":null,"abstract":"<p><p>Non-Orthogonal Multiple Access (NOMA) is the successive multiple-access methodologies for modern communication devices. Energy Efficiency (EE) is suggested in the NOMA system. In dynamic network conditions, the consideration of NOMA shows high computational complexity that minimizes the EE to degrade the system performance. This research suggested EE for the Multi-Carrier NOMA (MC-NOMA) models by optimization algorithm. The main scope of this research tends to improve the EE by Hybrid of Sewing Training and Lemur Optimization for optimizing the system parameters. The improvement made in this developed HSTLO algorithm can provide significant impact on MC-NOMA system, which it renders better user capacity while effectively optimizing the system parameters. Moreover, the Dilated Dense Recurrent Neural Network (DDRNN) model is developed. Employing the improvement in the deep learning model for the MC-NOMA system could effectively manage and enhance the system performance. Considering the DDRNN model can leverage to provide better generalization outcomes in different network scenarios that ensures to provide fast and reliable solutions compared to existing methods. Addressing the energy consumption problems in this research study will be analysed to show the advancement in MC-NOMA system that help to enhance the system performance.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-32"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2461046","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Non-Orthogonal Multiple Access (NOMA) is the successive multiple-access methodologies for modern communication devices. Energy Efficiency (EE) is suggested in the NOMA system. In dynamic network conditions, the consideration of NOMA shows high computational complexity that minimizes the EE to degrade the system performance. This research suggested EE for the Multi-Carrier NOMA (MC-NOMA) models by optimization algorithm. The main scope of this research tends to improve the EE by Hybrid of Sewing Training and Lemur Optimization for optimizing the system parameters. The improvement made in this developed HSTLO algorithm can provide significant impact on MC-NOMA system, which it renders better user capacity while effectively optimizing the system parameters. Moreover, the Dilated Dense Recurrent Neural Network (DDRNN) model is developed. Employing the improvement in the deep learning model for the MC-NOMA system could effectively manage and enhance the system performance. Considering the DDRNN model can leverage to provide better generalization outcomes in different network scenarios that ensures to provide fast and reliable solutions compared to existing methods. Addressing the energy consumption problems in this research study will be analysed to show the advancement in MC-NOMA system that help to enhance the system performance.

基于混合启发式改进的基于深度学习的多载波noma系统能效自动分配多目标函数。
非正交多址(NOMA)是现代通信设备的连续多址方法。建议在NOMA系统中使用能效(EE)。在动态网络条件下,考虑NOMA显示出较高的计算复杂度,使EE最小化,从而降低系统性能。本研究通过优化算法提出了多载波NOMA (MC-NOMA)模型的EE。本研究的主要范围是通过将缝纫训练与狐猴优化相结合的方法来优化系统参数,从而提高系统的EE。所开发的HSTLO算法的改进对MC-NOMA系统产生了显著的影响,在有效优化系统参数的同时获得了更好的用户容量。此外,还建立了扩展密集递归神经网络(DDRNN)模型。对MC-NOMA系统的深度学习模型进行改进,可以有效地管理和提高系统性能。考虑到DDRNN模型可以在不同的网络场景中提供更好的泛化结果,确保与现有方法相比提供快速可靠的解决方案。本研究将分析解决能源消耗问题,以显示MC-NOMA系统的进步,有助于提高系统性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信