{"title":"Establishment and genomic profiling of cholangiocarcinoma cells with functional characterization.","authors":"Rattanaporn Jaidee, Apinya Jusakul, Piman Pocasap, Veerapol Kukongviriyapan, Laddawan Senggunprai, Auemduan Prawan, Watcharin Loilome, Attapol Titapun, Apiwat Jareanrat, Vasin Thanasukarn, Natcha Khuntikeo, Nisana Namwat, Yaovalux Chamgramol, Malinee Thanee, Phongsathorn Wichian, Jing Han Hong, Peiyong Guan, Hong Lee Heng, Chawalit Pairojkul, Bin Tean Teh, Sarinya Kongpetch","doi":"10.1038/s41598-025-93192-1","DOIUrl":null,"url":null,"abstract":"<p><p>Cholangiocarcinoma (CCA) is a highly lethal hepatobiliary malignancy, with prognosis is influenced by anatomical subtypes and etiological factors. This study successfully established three CCA cell lines: KKU-097, KKU-466, and KKU-610, from the primary tumors of patients in liver fluke-endemic areas. These cells represent the perihilar CCA (pCCA) and intrahepatic CCA (iCCA) subtypes. Comprehensive analyses, including histopathology, molecular profiling, biomarkers, cancer phenotype characterization, and drug sensitivity testing with standard chemotherapeutics, were conducted. Whole-exome sequencing was performed to explore genetic alterations. All three cell lines exhibited adherent growth with an epithelial morphology and positive expression of the bile duct epithelial markers CK-7 and CK-19. Cytogenetic analysis revealed highly complex hypertriploid karyotypes with multiple chromosomal aberrations. Among the cell lines, KKU-610 demonstrated higher growth and invasion rates, whereas KKU-466 and KKU-097 cells exhibited less aggressive phenotypes. Drug sensitivity testing demonstrated relative resistance to gemcitabine as a monotherapy and in combination with cisplatin in all three cells. Genomic profiling identified targetable mutations, highlighting these new cell lines as valuable models for investigating the pathogenesis of CCA and evaluating therapeutic strategies.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8621"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904213/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93192-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cholangiocarcinoma (CCA) is a highly lethal hepatobiliary malignancy, with prognosis is influenced by anatomical subtypes and etiological factors. This study successfully established three CCA cell lines: KKU-097, KKU-466, and KKU-610, from the primary tumors of patients in liver fluke-endemic areas. These cells represent the perihilar CCA (pCCA) and intrahepatic CCA (iCCA) subtypes. Comprehensive analyses, including histopathology, molecular profiling, biomarkers, cancer phenotype characterization, and drug sensitivity testing with standard chemotherapeutics, were conducted. Whole-exome sequencing was performed to explore genetic alterations. All three cell lines exhibited adherent growth with an epithelial morphology and positive expression of the bile duct epithelial markers CK-7 and CK-19. Cytogenetic analysis revealed highly complex hypertriploid karyotypes with multiple chromosomal aberrations. Among the cell lines, KKU-610 demonstrated higher growth and invasion rates, whereas KKU-466 and KKU-097 cells exhibited less aggressive phenotypes. Drug sensitivity testing demonstrated relative resistance to gemcitabine as a monotherapy and in combination with cisplatin in all three cells. Genomic profiling identified targetable mutations, highlighting these new cell lines as valuable models for investigating the pathogenesis of CCA and evaluating therapeutic strategies.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.