Multimodal Metaverse Healthcare: A Collaborative Representation and Adaptive Fusion Approach for Generative Artificial-Intelligence-Driven Diagnosis.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI:10.34133/research.0616
Jianhui Lv, Adam Slowik, Shalli Rani, Byung-Gyu Kim, Chien-Ming Chen, Saru Kumari, Keqin Li, Xiaohong Lyu, Huamao Jiang
{"title":"Multimodal Metaverse Healthcare: A Collaborative Representation and Adaptive Fusion Approach for Generative Artificial-Intelligence-Driven Diagnosis.","authors":"Jianhui Lv, Adam Slowik, Shalli Rani, Byung-Gyu Kim, Chien-Ming Chen, Saru Kumari, Keqin Li, Xiaohong Lyu, Huamao Jiang","doi":"10.34133/research.0616","DOIUrl":null,"url":null,"abstract":"<p><p>The metaverse enables immersive virtual healthcare environments, presenting opportunities for enhanced care delivery. A key challenge lies in effectively combining multimodal healthcare data and generative artificial intelligence abilities within metaverse-based healthcare applications, which is a problem that needs to be addressed. This paper proposes a novel multimodal learning framework for metaverse healthcare, MMLMH, based on collaborative intra- and intersample representation and adaptive fusion. Our framework introduces a collaborative representation learning approach that captures shared and modality-specific features across text, audio, and visual health data. By combining modality-specific and shared encoders with carefully formulated intrasample and intersample collaboration mechanisms, MMLMH achieves superior feature representation for complex health assessments. The framework's adaptive fusion approach, utilizing attention mechanisms and gated neural networks, demonstrates robust performance across varying noise levels and data quality conditions. Experiments on metaverse healthcare datasets demonstrate MMLMH's superior performance over baseline methods across multiple evaluation metrics. Longitudinal studies and visualization further illustrate MMLMH's adaptability to evolving virtual environments and balanced performance across diagnostic accuracy, patient-system interaction efficacy, and data integration complexity. The proposed framework has a unique advantage in that a similar level of performance is maintained across various patient populations and virtual avatars, which could lead to greater personalization of healthcare experiences in the metaverse. MMLMH's successful functioning in such complicated circumstances suggests that it can combine and process information streams from several sources. They can be successfully utilized in next-generation healthcare delivery through virtual reality.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0616"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899152/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0616","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

The metaverse enables immersive virtual healthcare environments, presenting opportunities for enhanced care delivery. A key challenge lies in effectively combining multimodal healthcare data and generative artificial intelligence abilities within metaverse-based healthcare applications, which is a problem that needs to be addressed. This paper proposes a novel multimodal learning framework for metaverse healthcare, MMLMH, based on collaborative intra- and intersample representation and adaptive fusion. Our framework introduces a collaborative representation learning approach that captures shared and modality-specific features across text, audio, and visual health data. By combining modality-specific and shared encoders with carefully formulated intrasample and intersample collaboration mechanisms, MMLMH achieves superior feature representation for complex health assessments. The framework's adaptive fusion approach, utilizing attention mechanisms and gated neural networks, demonstrates robust performance across varying noise levels and data quality conditions. Experiments on metaverse healthcare datasets demonstrate MMLMH's superior performance over baseline methods across multiple evaluation metrics. Longitudinal studies and visualization further illustrate MMLMH's adaptability to evolving virtual environments and balanced performance across diagnostic accuracy, patient-system interaction efficacy, and data integration complexity. The proposed framework has a unique advantage in that a similar level of performance is maintained across various patient populations and virtual avatars, which could lead to greater personalization of healthcare experiences in the metaverse. MMLMH's successful functioning in such complicated circumstances suggests that it can combine and process information streams from several sources. They can be successfully utilized in next-generation healthcare delivery through virtual reality.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信