Characterization of the binding features between SARS-CoV-2 5'-proximal transcripts of genomic RNA and nucleocapsid proteins.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Biology Pub Date : 2025-12-01 Epub Date: 2025-03-12 DOI:10.1080/15476286.2025.2471643
Shih-Cheng Chen, Cui-Ting Xu, Chuan-Fu Chang, Chia-Shin Yang, Pin-Han Lin, Wei-Min Liu, Yeh Chen, Chien-Hung Yu
{"title":"Characterization of the binding features between SARS-CoV-2 5'-proximal transcripts of genomic RNA and nucleocapsid proteins.","authors":"Shih-Cheng Chen, Cui-Ting Xu, Chuan-Fu Chang, Chia-Shin Yang, Pin-Han Lin, Wei-Min Liu, Yeh Chen, Chien-Hung Yu","doi":"10.1080/15476286.2025.2471643","DOIUrl":null,"url":null,"abstract":"<p><p>Packaging signals (PSs) of coronaviruses (CoVs) are specific RNA elements recognized by nucleocapsid (N) proteins that direct the selective packaging of genomic RNAs (gRNAs). These signals have been identified in the coding regions of the nonstructural protein 15 (Nsp 15) in CoVs classified under <i>Embecovirus</i>, a subgenus of betacoronaviruses (beta-CoVs). The PSs in other alpha- and beta-CoVs have been proposed to reside in the 5'-proximal regions of gRNAs, supported by comprehensive phylogenetic evidence. However, experimental data remain limited. In this study, we investigated the interactions between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 5'-proximal gRNA transcripts and N proteins using electrophoretic mobility shift assays (EMSAs). Our findings revealed that the <i>in vitro</i> synthesized 5'-proximal gRNA transcripts of CoVs can shift from a major conformation to alternative conformations. We also observed that the conformer comprising multiple stem-loops (SLs) is preferentially bound by N proteins. Deletions of the 5'-proximal structural elements of CoV gRNA transcripts, SL1 and SL5a/b/c in particular, were found to promote the formation of alternative conformations. Furthermore, we identified RNA-binding peptides from a pool derived from SARS-CoV N protein. These RNA-interacting peptides were shown to preferentially bind to wild-type SL5a RNA. In addition, our observations of N protein condensate formation <i>in vitro</i> demonstrated that liquid-liquid phase separation (LLPS) of N proteins with CoV-5'-UTR transcripts was influenced by the presence of SL5a/b/c. In conclusion, these results collectively reveal previously uncharacterized binding features between the 5'-proximal transcripts of CoV gRNAs and N proteins.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"22 1","pages":"1-16"},"PeriodicalIF":3.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2025.2471643","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Packaging signals (PSs) of coronaviruses (CoVs) are specific RNA elements recognized by nucleocapsid (N) proteins that direct the selective packaging of genomic RNAs (gRNAs). These signals have been identified in the coding regions of the nonstructural protein 15 (Nsp 15) in CoVs classified under Embecovirus, a subgenus of betacoronaviruses (beta-CoVs). The PSs in other alpha- and beta-CoVs have been proposed to reside in the 5'-proximal regions of gRNAs, supported by comprehensive phylogenetic evidence. However, experimental data remain limited. In this study, we investigated the interactions between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 5'-proximal gRNA transcripts and N proteins using electrophoretic mobility shift assays (EMSAs). Our findings revealed that the in vitro synthesized 5'-proximal gRNA transcripts of CoVs can shift from a major conformation to alternative conformations. We also observed that the conformer comprising multiple stem-loops (SLs) is preferentially bound by N proteins. Deletions of the 5'-proximal structural elements of CoV gRNA transcripts, SL1 and SL5a/b/c in particular, were found to promote the formation of alternative conformations. Furthermore, we identified RNA-binding peptides from a pool derived from SARS-CoV N protein. These RNA-interacting peptides were shown to preferentially bind to wild-type SL5a RNA. In addition, our observations of N protein condensate formation in vitro demonstrated that liquid-liquid phase separation (LLPS) of N proteins with CoV-5'-UTR transcripts was influenced by the presence of SL5a/b/c. In conclusion, these results collectively reveal previously uncharacterized binding features between the 5'-proximal transcripts of CoV gRNAs and N proteins.

SARS-CoV-2基因组RNA近端转录物与核衣壳蛋白结合特征的研究
冠状病毒(cov)的包装信号(PSs)是由核衣壳(N)蛋白识别的特异性RNA元件,可指导基因组RNA (grna)的选择性包装。这些信号已在冠状病毒(β -冠状病毒)亚属Embecovirus分类的冠状病毒的非结构蛋白15 (Nsp 15)编码区被发现。其他α -和β -冠状病毒中的PSs被认为位于grna的5'-近端区域,这得到了全面的系统发育证据的支持。然而,实验数据仍然有限。在这项研究中,我们利用电泳迁移位移测定(EMSAs)研究了严重急性呼吸综合征冠状病毒2 (SARS-CoV-2) 5'-近端gRNA转录物与N蛋白之间的相互作用。我们的研究结果表明,体外合成的冠状病毒的5'-近端gRNA转录物可以从主要构象转变为替代构象。我们还观察到,包含多个茎环(SLs)的构象优先与N蛋白结合。研究发现,冠状病毒gRNA转录本的5'-近端结构元件,特别是SL1和SL5a/b/c的缺失,促进了替代构象的形成。此外,我们从SARS-CoV N蛋白衍生的一个库中鉴定了rna结合肽。这些RNA相互作用肽被证明优先结合野生型SL5a RNA。此外,我们在体外对N蛋白凝析物形成的观察表明,含有CoV-5'-UTR转录本的N蛋白的液-液相分离(LLPS)受到SL5a/b/c存在的影响。总之,这些结果共同揭示了冠状病毒grna的5'-近端转录物与N蛋白之间先前未表征的结合特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RNA Biology
RNA Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
82
审稿时长
1 months
期刊介绍: RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research. RNA Biology brings together a multidisciplinary community of scientists working in the areas of: Transcription and splicing Post-transcriptional regulation of gene expression Non-coding RNAs RNA localization Translation and catalysis by RNA Structural biology Bioinformatics RNA in disease and therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信