The Environmental Analysis of the Post-Use Management Scenarios of the Heat-Shrinkable Film.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-03-05 DOI:10.3390/polym17050690
Patrycja Walichnowska, Józef Flizikowski, Andrzej Tomporowski, Marek Opielak, Wojciech Cieślik
{"title":"The Environmental Analysis of the Post-Use Management Scenarios of the Heat-Shrinkable Film.","authors":"Patrycja Walichnowska, Józef Flizikowski, Andrzej Tomporowski, Marek Opielak, Wojciech Cieślik","doi":"10.3390/polym17050690","DOIUrl":null,"url":null,"abstract":"<p><p>The post-use management of plastic films, including shrink films, poses a significant environmental and technological challenge for the industry. Due to their durability and difficulty in degradation, these wastes contribute to environmental pollution, generating microplastics and greenhouse gas emissions during improper disposal. This paper examines different post-use management methods for shrink wrap, such as recycling, landfilling, and incineration, and assesses their impact on the environmental impact of the bottle packaging process using a life-cycle analysis (LCA). This study shows that the recycling option has the lowest potential environmental impact. Compared to other post-use management options, recycling reduces the potential environmental impact by more than 50%. The analysis also shows that the tested scenario using recycled film and photovoltaic energy has the lowest potential environmental impact. Using recycled film and powering the process with renewable energy reduces the potential environmental impact by about 95% compared to Scenario 1 and by about 85% in Scenario 3.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902642/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050690","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The post-use management of plastic films, including shrink films, poses a significant environmental and technological challenge for the industry. Due to their durability and difficulty in degradation, these wastes contribute to environmental pollution, generating microplastics and greenhouse gas emissions during improper disposal. This paper examines different post-use management methods for shrink wrap, such as recycling, landfilling, and incineration, and assesses their impact on the environmental impact of the bottle packaging process using a life-cycle analysis (LCA). This study shows that the recycling option has the lowest potential environmental impact. Compared to other post-use management options, recycling reduces the potential environmental impact by more than 50%. The analysis also shows that the tested scenario using recycled film and photovoltaic energy has the lowest potential environmental impact. Using recycled film and powering the process with renewable energy reduces the potential environmental impact by about 95% compared to Scenario 1 and by about 85% in Scenario 3.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信