Experimental Design (24) to Improve the Reaction Conditions of Non-Segmented Poly(ester-urethanes) (PEUs) Derived from α,ω-Hydroxy Telechelic Poly(ε-caprolactone) (HOPCLOH).

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-02-28 DOI:10.3390/polym17050668
Jaime Maldonado-Estudillo, Rodrigo Navarro Crespo, Ángel Marcos-Fernández, María Dolores de Dios Caputto, Gustavo Cruz-Jiménez, José E Báez
{"title":"Experimental Design (2<sup>4</sup>) to Improve the Reaction Conditions of Non-Segmented Poly(ester-urethanes) (PEUs) Derived from α,ω-Hydroxy Telechelic Poly(ε-caprolactone) (HOPCLOH).","authors":"Jaime Maldonado-Estudillo, Rodrigo Navarro Crespo, Ángel Marcos-Fernández, María Dolores de Dios Caputto, Gustavo Cruz-Jiménez, José E Báez","doi":"10.3390/polym17050668","DOIUrl":null,"url":null,"abstract":"<p><p>Aliphatic unsegmented polyurethanes (PUs) have garnered relatively limited attention in the literature, despite their valuable properties such as UV resistance and biocompatibility, making them suitable for biomedical applications. This study focuses on synthesizing poly(ester-urethanes) (PEUs) using 1,6-hexamethylene diisocyanate and the macrodiol α,ω-hydroxy telechelic poly(ε-caprolactone) (HOPCLOH). To optimize the synthesis, a statistical experimental design approach was employed, a methodology not commonly utilized in polymer science. The influence of reaction temperature, time, reagent concentrations, and solvent type on the resulting PEUs was investigated. Characterization techniques included FT-IR, <sup>1</sup>H NMR, differential scanning calorimetry (DSC), gel permeation chromatography (GPC), optical microscopy, and mechanical testing. The results demonstrated that all factors significantly impacted the number-average molecular weight (<i>M</i><sub>n</sub>) as determined by GPC. Furthermore, the statistical design revealed crucial interaction effects between factors, such as a dependence between reaction time and temperature. For example, a fixed reaction time of 1 h, with the temperature varying from 50 °C to 61 °C, did not significantly alter <i>M</i><sub>n</sub>. Better reaction conditions yielded high <i>M</i><sub>n</sub> (average: 162,000 g/mol), desirable mechanical properties (elongation at break > 1000%), low levels of unreacted HOPCLOH in the PEU films (OH/ESTER response = 0.0008), and reduced crystallinity (Δ<i>H</i><sub>m</sub> = 11 J/g) in the soft segment, as observed by DSC and optical microscopy. In contrast, suboptimal conditions resulted in low <i>M</i><sub>n</sub>, brittle materials with unmeasurable mechanical properties, high crystallinity, and significant amounts of residual HOPCLOH. The best experimental conditions were 61 °C, 0.176 molal, 8 h, and chloroform as the solvent (ε = 4.8).</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902744/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050668","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Aliphatic unsegmented polyurethanes (PUs) have garnered relatively limited attention in the literature, despite their valuable properties such as UV resistance and biocompatibility, making them suitable for biomedical applications. This study focuses on synthesizing poly(ester-urethanes) (PEUs) using 1,6-hexamethylene diisocyanate and the macrodiol α,ω-hydroxy telechelic poly(ε-caprolactone) (HOPCLOH). To optimize the synthesis, a statistical experimental design approach was employed, a methodology not commonly utilized in polymer science. The influence of reaction temperature, time, reagent concentrations, and solvent type on the resulting PEUs was investigated. Characterization techniques included FT-IR, 1H NMR, differential scanning calorimetry (DSC), gel permeation chromatography (GPC), optical microscopy, and mechanical testing. The results demonstrated that all factors significantly impacted the number-average molecular weight (Mn) as determined by GPC. Furthermore, the statistical design revealed crucial interaction effects between factors, such as a dependence between reaction time and temperature. For example, a fixed reaction time of 1 h, with the temperature varying from 50 °C to 61 °C, did not significantly alter Mn. Better reaction conditions yielded high Mn (average: 162,000 g/mol), desirable mechanical properties (elongation at break > 1000%), low levels of unreacted HOPCLOH in the PEU films (OH/ESTER response = 0.0008), and reduced crystallinity (ΔHm = 11 J/g) in the soft segment, as observed by DSC and optical microscopy. In contrast, suboptimal conditions resulted in low Mn, brittle materials with unmeasurable mechanical properties, high crystallinity, and significant amounts of residual HOPCLOH. The best experimental conditions were 61 °C, 0.176 molal, 8 h, and chloroform as the solvent (ε = 4.8).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信