Experimental Design (24) to Improve the Reaction Conditions of Non-Segmented Poly(ester-urethanes) (PEUs) Derived from α,ω-Hydroxy Telechelic Poly(ε-caprolactone) (HOPCLOH).
Jaime Maldonado-Estudillo, Rodrigo Navarro Crespo, Ángel Marcos-Fernández, María Dolores de Dios Caputto, Gustavo Cruz-Jiménez, José E Báez
{"title":"Experimental Design (2<sup>4</sup>) to Improve the Reaction Conditions of Non-Segmented Poly(ester-urethanes) (PEUs) Derived from α,ω-Hydroxy Telechelic Poly(ε-caprolactone) (HOPCLOH).","authors":"Jaime Maldonado-Estudillo, Rodrigo Navarro Crespo, Ángel Marcos-Fernández, María Dolores de Dios Caputto, Gustavo Cruz-Jiménez, José E Báez","doi":"10.3390/polym17050668","DOIUrl":null,"url":null,"abstract":"<p><p>Aliphatic unsegmented polyurethanes (PUs) have garnered relatively limited attention in the literature, despite their valuable properties such as UV resistance and biocompatibility, making them suitable for biomedical applications. This study focuses on synthesizing poly(ester-urethanes) (PEUs) using 1,6-hexamethylene diisocyanate and the macrodiol α,ω-hydroxy telechelic poly(ε-caprolactone) (HOPCLOH). To optimize the synthesis, a statistical experimental design approach was employed, a methodology not commonly utilized in polymer science. The influence of reaction temperature, time, reagent concentrations, and solvent type on the resulting PEUs was investigated. Characterization techniques included FT-IR, <sup>1</sup>H NMR, differential scanning calorimetry (DSC), gel permeation chromatography (GPC), optical microscopy, and mechanical testing. The results demonstrated that all factors significantly impacted the number-average molecular weight (<i>M</i><sub>n</sub>) as determined by GPC. Furthermore, the statistical design revealed crucial interaction effects between factors, such as a dependence between reaction time and temperature. For example, a fixed reaction time of 1 h, with the temperature varying from 50 °C to 61 °C, did not significantly alter <i>M</i><sub>n</sub>. Better reaction conditions yielded high <i>M</i><sub>n</sub> (average: 162,000 g/mol), desirable mechanical properties (elongation at break > 1000%), low levels of unreacted HOPCLOH in the PEU films (OH/ESTER response = 0.0008), and reduced crystallinity (Δ<i>H</i><sub>m</sub> = 11 J/g) in the soft segment, as observed by DSC and optical microscopy. In contrast, suboptimal conditions resulted in low <i>M</i><sub>n</sub>, brittle materials with unmeasurable mechanical properties, high crystallinity, and significant amounts of residual HOPCLOH. The best experimental conditions were 61 °C, 0.176 molal, 8 h, and chloroform as the solvent (ε = 4.8).</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902744/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050668","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Aliphatic unsegmented polyurethanes (PUs) have garnered relatively limited attention in the literature, despite their valuable properties such as UV resistance and biocompatibility, making them suitable for biomedical applications. This study focuses on synthesizing poly(ester-urethanes) (PEUs) using 1,6-hexamethylene diisocyanate and the macrodiol α,ω-hydroxy telechelic poly(ε-caprolactone) (HOPCLOH). To optimize the synthesis, a statistical experimental design approach was employed, a methodology not commonly utilized in polymer science. The influence of reaction temperature, time, reagent concentrations, and solvent type on the resulting PEUs was investigated. Characterization techniques included FT-IR, 1H NMR, differential scanning calorimetry (DSC), gel permeation chromatography (GPC), optical microscopy, and mechanical testing. The results demonstrated that all factors significantly impacted the number-average molecular weight (Mn) as determined by GPC. Furthermore, the statistical design revealed crucial interaction effects between factors, such as a dependence between reaction time and temperature. For example, a fixed reaction time of 1 h, with the temperature varying from 50 °C to 61 °C, did not significantly alter Mn. Better reaction conditions yielded high Mn (average: 162,000 g/mol), desirable mechanical properties (elongation at break > 1000%), low levels of unreacted HOPCLOH in the PEU films (OH/ESTER response = 0.0008), and reduced crystallinity (ΔHm = 11 J/g) in the soft segment, as observed by DSC and optical microscopy. In contrast, suboptimal conditions resulted in low Mn, brittle materials with unmeasurable mechanical properties, high crystallinity, and significant amounts of residual HOPCLOH. The best experimental conditions were 61 °C, 0.176 molal, 8 h, and chloroform as the solvent (ε = 4.8).
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.