Enhancing Thin Film Properties of Chitosan-Collagen Biocomposites Through Potassium Silicate and Tannic Acid Integration.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-02-25 DOI:10.3390/polym17050608
Beata Kaczmarek-Szczepańska, Ugo D'Amora, Lidia Zasada, Marta Michalska-Sionkowska, Oliwia Miłek, Krzysztof Łukowicz, Anna Maria Osyczka
{"title":"Enhancing Thin Film Properties of Chitosan-Collagen Biocomposites Through Potassium Silicate and Tannic Acid Integration.","authors":"Beata Kaczmarek-Szczepańska, Ugo D'Amora, Lidia Zasada, Marta Michalska-Sionkowska, Oliwia Miłek, Krzysztof Łukowicz, Anna Maria Osyczka","doi":"10.3390/polym17050608","DOIUrl":null,"url":null,"abstract":"<p><p>Chitosan and collagen are natural polymers widely used in biomaterials science; however, their inherent low stability and solubility present several challenges to obtain formulations suitable for potential clinical applications. In this study, tannic acid (TA) was employed as a cross-linker to improve the properties of thin films made from chitosan and collagen. In addition, potassium silicate (PS) was added as an inorganic filler, to produce innovative biocomposite films. The impact of TA and PS on physicochemical (i.e., material homogeneity, surface free energy, degradation, and stability roughness of surface), antioxidant, hemocompatibility, as well as cellular responses was evaluated. The results demonstrated that the incorporation of TA significantly enhanced the physicochemical properties of the chitosan/collagen-based films. The addition of 5% PS resulted in an increase in surface free energy and a decrease in roughness parameters. Furthermore, both surface free energy and cellular responses improved with the increased TA concentration in the biocomposite firms. Meanwhile, the hemolysis rate remained below 5%, indicating the potential suitability of these materials for medical applications, such as coatings or scaffolds for bone or skin wound healing.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902633/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050608","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Chitosan and collagen are natural polymers widely used in biomaterials science; however, their inherent low stability and solubility present several challenges to obtain formulations suitable for potential clinical applications. In this study, tannic acid (TA) was employed as a cross-linker to improve the properties of thin films made from chitosan and collagen. In addition, potassium silicate (PS) was added as an inorganic filler, to produce innovative biocomposite films. The impact of TA and PS on physicochemical (i.e., material homogeneity, surface free energy, degradation, and stability roughness of surface), antioxidant, hemocompatibility, as well as cellular responses was evaluated. The results demonstrated that the incorporation of TA significantly enhanced the physicochemical properties of the chitosan/collagen-based films. The addition of 5% PS resulted in an increase in surface free energy and a decrease in roughness parameters. Furthermore, both surface free energy and cellular responses improved with the increased TA concentration in the biocomposite firms. Meanwhile, the hemolysis rate remained below 5%, indicating the potential suitability of these materials for medical applications, such as coatings or scaffolds for bone or skin wound healing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信