Multi-Objective Optimization of Low-Velocity Impact and Compression Behavior of 3D-Printed PLA Cubic Samples.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-02-26 DOI:10.3390/polym17050627
Oguz Dogan, Muhammed S Kamer, Mehmet F Sahan
{"title":"Multi-Objective Optimization of Low-Velocity Impact and Compression Behavior of 3D-Printed PLA Cubic Samples.","authors":"Oguz Dogan, Muhammed S Kamer, Mehmet F Sahan","doi":"10.3390/polym17050627","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates how various 3D printing parameters influence mechanical properties, specifically strength in compression and low-velocity impact (LVI) tests, and identifies the best printing parameters (layer thickness, nozzle diameter, and infill density) that lead to durable samples. Utilizing a Taguchi L<sub>9</sub> orthogonal array, the study systematically examined the effects of three critical 3D printing parameters on the mechanical strength of cubic test samples. Nine experimental configurations were tested, each subjected to compression and LVI tests according to ASTM standards. Statistical analyses, including analysis of variance (ANOVA) and grey relational analysis (GRA), were employed to evaluate parameter significance and optimize results. Infill density significantly influenced the compression tests, while nozzle diameter was the most impactful parameter in LVI tests. Layer thickness had a minimal influence on both outcomes. Additionally, applying GRA revealed that optimal 3D printing parameters differ when considering the two mechanical properties simultaneously, highlighting the complexity of achieving balanced performance in 3D-printed structures. The application of the Taguchi method to optimize 3D printing parameters improved the mechanical properties of printed materials while significantly reducing the number of required experiments. By employing an efficient experimental design, this research demonstrates how to achieve high-quality results in compression and LVI tests with minimal resource use and time investment. Additionally, integrating GRA for the simultaneous optimization of multiple performance characteristics further enhances the practical applicability of the findings in additive manufacturing.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050627","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates how various 3D printing parameters influence mechanical properties, specifically strength in compression and low-velocity impact (LVI) tests, and identifies the best printing parameters (layer thickness, nozzle diameter, and infill density) that lead to durable samples. Utilizing a Taguchi L9 orthogonal array, the study systematically examined the effects of three critical 3D printing parameters on the mechanical strength of cubic test samples. Nine experimental configurations were tested, each subjected to compression and LVI tests according to ASTM standards. Statistical analyses, including analysis of variance (ANOVA) and grey relational analysis (GRA), were employed to evaluate parameter significance and optimize results. Infill density significantly influenced the compression tests, while nozzle diameter was the most impactful parameter in LVI tests. Layer thickness had a minimal influence on both outcomes. Additionally, applying GRA revealed that optimal 3D printing parameters differ when considering the two mechanical properties simultaneously, highlighting the complexity of achieving balanced performance in 3D-printed structures. The application of the Taguchi method to optimize 3D printing parameters improved the mechanical properties of printed materials while significantly reducing the number of required experiments. By employing an efficient experimental design, this research demonstrates how to achieve high-quality results in compression and LVI tests with minimal resource use and time investment. Additionally, integrating GRA for the simultaneous optimization of multiple performance characteristics further enhances the practical applicability of the findings in additive manufacturing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信