Geopolymer-Based Stabilization of Heavy Metals, the Role of Chemical Agents in Encapsulation and Adsorption: Review.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-03-01 DOI:10.3390/polym17050670
Francesco Genua, Isabella Lancellotti, Cristina Leonelli
{"title":"Geopolymer-Based Stabilization of Heavy Metals, the Role of Chemical Agents in Encapsulation and Adsorption: Review.","authors":"Francesco Genua, Isabella Lancellotti, Cristina Leonelli","doi":"10.3390/polym17050670","DOIUrl":null,"url":null,"abstract":"<p><p>This review provides a comprehensive analysis of the role of chemical agents in enhancing the performance of geopolymers for the stabilization and adsorption of heavy metals. Geopolymers, synthesized from aluminosilicate sources activated under alkaline conditions, are recognized for their versatile structural and environmental benefits, including low carbon emissions and high chemical resistance. Their unique Si-O-Al framework supports both stabilization/solidification (S/S) and adsorption processes, making them an ideal polymeric matrix for the immobilization of hazardous heavy metals in contaminated environments. The review categorizes the heavy metal immobilization mechanisms into physical encapsulation, ion exchange, hydroxide precipitation, and chemical complexation, depending on the specific metal species and geopolymer formulation. The introduction of chemical stabilizing agents, such as dithiocarbamate, sodium sulfide, and trimercaptotriazine, significantly improves the encapsulation efficacy of geopolymers by promoting targeted reactions and stable metal complexes. These agents enable the effective S/S of metals, such as lead, cadmium, and chromium, reducing their leachability and environmental impact. In addition to solid waste management applications, geopolymers have shown promising adsorption capabilities for aqueous contaminants, with chemical modifications further increasing their affinity for specific heavy metals. This review evaluates the impact of different agents and synthesis conditions on the overall performance of geopolymers in heavy metal immobilization, highlighting advances in environmental applications and future research directions for sustainable hazardous waste treatment.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902628/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050670","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This review provides a comprehensive analysis of the role of chemical agents in enhancing the performance of geopolymers for the stabilization and adsorption of heavy metals. Geopolymers, synthesized from aluminosilicate sources activated under alkaline conditions, are recognized for their versatile structural and environmental benefits, including low carbon emissions and high chemical resistance. Their unique Si-O-Al framework supports both stabilization/solidification (S/S) and adsorption processes, making them an ideal polymeric matrix for the immobilization of hazardous heavy metals in contaminated environments. The review categorizes the heavy metal immobilization mechanisms into physical encapsulation, ion exchange, hydroxide precipitation, and chemical complexation, depending on the specific metal species and geopolymer formulation. The introduction of chemical stabilizing agents, such as dithiocarbamate, sodium sulfide, and trimercaptotriazine, significantly improves the encapsulation efficacy of geopolymers by promoting targeted reactions and stable metal complexes. These agents enable the effective S/S of metals, such as lead, cadmium, and chromium, reducing their leachability and environmental impact. In addition to solid waste management applications, geopolymers have shown promising adsorption capabilities for aqueous contaminants, with chemical modifications further increasing their affinity for specific heavy metals. This review evaluates the impact of different agents and synthesis conditions on the overall performance of geopolymers in heavy metal immobilization, highlighting advances in environmental applications and future research directions for sustainable hazardous waste treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信