Functionalization of Phenolic Aldehydes for the Preparation of Sustainable Polyesters and Polyurethanes.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-02-27 DOI:10.3390/polym17050643
Rachele N Carafa, Brigida V Fernandes, Clara Repiquet, Sidrah Rana, Daniel A Foucher, Guerino G Sacripante
{"title":"Functionalization of Phenolic Aldehydes for the Preparation of Sustainable Polyesters and Polyurethanes.","authors":"Rachele N Carafa, Brigida V Fernandes, Clara Repiquet, Sidrah Rana, Daniel A Foucher, Guerino G Sacripante","doi":"10.3390/polym17050643","DOIUrl":null,"url":null,"abstract":"<p><p>Biobased organic diols derived from the phenolic aldehyde by-products in the depolymerization of lignin (4-hydroxybenzaldehyde, vanillin, and syringaldehyde) for the synthesis of polyesters and polyurethanes is described. Methods to prepare lignin-based diols involved a two-step synthetic route using either a hydroxy alkylation and aldehyde reduction or an aldehyde reduction and Williamson-Ether substitution. The preparation of five polyesters (PEs) and ten polyurethanes (PUs) from lignin-based diols was also performed and their physical and thermal properties were analyzed. DSC analysis confirmed the amorphous nature of all synthesized polymers, and GPC analysis revealed broad dispersities and high molecular weights. Two PE polyols were also derived from a vanillin-based diol at concentrations of 10 and 25 wt% for their usage in sustainable PU foams. PU foams were prepared from these polyols, where it was found that only the foam containing the 10 wt% formulation was suitable for mechanical testing. The PU foam samples were found to have good hardness and tensile strengths compared to both control foams, showing potential for the incorporation of biobased polyols for PU foam formation.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902746/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050643","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Biobased organic diols derived from the phenolic aldehyde by-products in the depolymerization of lignin (4-hydroxybenzaldehyde, vanillin, and syringaldehyde) for the synthesis of polyesters and polyurethanes is described. Methods to prepare lignin-based diols involved a two-step synthetic route using either a hydroxy alkylation and aldehyde reduction or an aldehyde reduction and Williamson-Ether substitution. The preparation of five polyesters (PEs) and ten polyurethanes (PUs) from lignin-based diols was also performed and their physical and thermal properties were analyzed. DSC analysis confirmed the amorphous nature of all synthesized polymers, and GPC analysis revealed broad dispersities and high molecular weights. Two PE polyols were also derived from a vanillin-based diol at concentrations of 10 and 25 wt% for their usage in sustainable PU foams. PU foams were prepared from these polyols, where it was found that only the foam containing the 10 wt% formulation was suitable for mechanical testing. The PU foam samples were found to have good hardness and tensile strengths compared to both control foams, showing potential for the incorporation of biobased polyols for PU foam formation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信