Frontal Polymerization of Epoxy Resins: Kinetic Modeling, Rate Regulation and Curing Process Simulation for Space Manufacturing Applications.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-03-04 DOI:10.3390/polym17050680
Haisheng Wu, Yizhuo Gu, Xinyu Liu, Chaobo Xin
{"title":"Frontal Polymerization of Epoxy Resins: Kinetic Modeling, Rate Regulation and Curing Process Simulation for Space Manufacturing Applications.","authors":"Haisheng Wu, Yizhuo Gu, Xinyu Liu, Chaobo Xin","doi":"10.3390/polym17050680","DOIUrl":null,"url":null,"abstract":"<p><p>Frontal polymerization (FP) technology has attracted significant attention as an efficient, low-energy curing method for thermosetting resins. By enabling self-sustaining polymerization reactions, FP significantly reduces curing time and minimizes external energy dependence, making it ideal for in-orbit manufacturing applications. In contrast to traditional curing methods, which are limited by high energy consumption and low efficiency, FP offers a more efficient and flexible alternative. Nonetheless, the FP process is sensitive to material composition, processing and environmental factors, requiring systematic studies to enhance performance. This work focuses on reaction mechanisms, curing kinetics and processing factors of a self-developed FP epoxy resin system. The revealed curing mechanism and kinetics reveals a high initiation energy barrier and rapid curing characteristics, showing appropriate reaction inertness before initiation and stable reaction without continuous external energy input. The influences of initiator concentration and epoxy resin type on polymerization rate and the properties of cured resin were examined. Additionally, a curing simulation method validated by the experiment were employed to analyze the effects of mold material, resin cross-sectional area, initial temperature and environmental conditions on polymerization behavior. The results provide valuable insights for optimizing FP, advancing the understanding of the curing process and improving resin performance in space-based applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902743/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050680","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Frontal polymerization (FP) technology has attracted significant attention as an efficient, low-energy curing method for thermosetting resins. By enabling self-sustaining polymerization reactions, FP significantly reduces curing time and minimizes external energy dependence, making it ideal for in-orbit manufacturing applications. In contrast to traditional curing methods, which are limited by high energy consumption and low efficiency, FP offers a more efficient and flexible alternative. Nonetheless, the FP process is sensitive to material composition, processing and environmental factors, requiring systematic studies to enhance performance. This work focuses on reaction mechanisms, curing kinetics and processing factors of a self-developed FP epoxy resin system. The revealed curing mechanism and kinetics reveals a high initiation energy barrier and rapid curing characteristics, showing appropriate reaction inertness before initiation and stable reaction without continuous external energy input. The influences of initiator concentration and epoxy resin type on polymerization rate and the properties of cured resin were examined. Additionally, a curing simulation method validated by the experiment were employed to analyze the effects of mold material, resin cross-sectional area, initial temperature and environmental conditions on polymerization behavior. The results provide valuable insights for optimizing FP, advancing the understanding of the curing process and improving resin performance in space-based applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信