{"title":"Incorporating Non-Linear Epoxy Resin Development in Infusion Simulations: A Dual-Exponent Viscosity Model Approach.","authors":"Mohammad W Tahir, Umar Khan, Jan-Peter Schümann","doi":"10.3390/polym17050657","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of liquid composite moulding (LCM) simulations, a long-standing assumption has dominated-the belief in constant resin viscosity. While effective in many cases, this assumption may not hold for the infusion process, which lasts for an extended period. This impacts the mechanical properties of the cured epoxy, which are crucial for load transfer in polymer structures. The majority of epoxy resins operate on a bipartite foundation, wherein their viscosity undergoes dynamic alterations during the process of cross-linking. Temperature and cross-linking intricately interact, with elevated temperatures initially reducing viscosity due to kinetic energy but later increasing it as cross-linking accelerates. This interplay significantly influences the efficiency of the infusion process, especially in large and intricate moulds. This article explores the significant temperature dependence of epoxy resin viscosity, proposing an accurate model rooted in its non-linear evolution. This model aligns with empirical evidence, offering insights into determining the optimal starting temperature for efficient mould filling. This study presents an advanced infusion model that extends existing non-linear dual-split viscosity approaches by incorporating the experimental validation of viscosity variations. Unlike previous models that primarily focus on theoretical or numerical frameworks, this work integrates experimental insights to optimize infusion temperature for efficient resin infusion in large and complex parts. Building on these findings, a novel mould-filling technique is proposed to enhance efficiency and reduce material waste.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902311/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050657","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of liquid composite moulding (LCM) simulations, a long-standing assumption has dominated-the belief in constant resin viscosity. While effective in many cases, this assumption may not hold for the infusion process, which lasts for an extended period. This impacts the mechanical properties of the cured epoxy, which are crucial for load transfer in polymer structures. The majority of epoxy resins operate on a bipartite foundation, wherein their viscosity undergoes dynamic alterations during the process of cross-linking. Temperature and cross-linking intricately interact, with elevated temperatures initially reducing viscosity due to kinetic energy but later increasing it as cross-linking accelerates. This interplay significantly influences the efficiency of the infusion process, especially in large and intricate moulds. This article explores the significant temperature dependence of epoxy resin viscosity, proposing an accurate model rooted in its non-linear evolution. This model aligns with empirical evidence, offering insights into determining the optimal starting temperature for efficient mould filling. This study presents an advanced infusion model that extends existing non-linear dual-split viscosity approaches by incorporating the experimental validation of viscosity variations. Unlike previous models that primarily focus on theoretical or numerical frameworks, this work integrates experimental insights to optimize infusion temperature for efficient resin infusion in large and complex parts. Building on these findings, a novel mould-filling technique is proposed to enhance efficiency and reduce material waste.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.