Dynamic Behavior of Carbon Nanotube-Reinforced Polymer Composite Ring-like Structures: Unraveling the Effects of Agglomeration, Porosity, and Elastic Coupling.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-03-05 DOI:10.3390/polym17050696
Hossein Mottaghi T, Moein A Ghandehari, Amir R Masoodi
{"title":"Dynamic Behavior of Carbon Nanotube-Reinforced Polymer Composite Ring-like Structures: Unraveling the Effects of Agglomeration, Porosity, and Elastic Coupling.","authors":"Hossein Mottaghi T, Moein A Ghandehari, Amir R Masoodi","doi":"10.3390/polym17050696","DOIUrl":null,"url":null,"abstract":"<p><p>This research examines the free vibration characteristics of composite ring-like structures enhanced with carbon nanotubes (CNTs), taking into account the effects of CNT agglomeration. The structural framework comprises two concentric composite rings linked by elastic springs, creating a coupled beam ring (CBR) system. The first-order shear deformation theory (FSDT) is applied to account for transverse shear deformation, while Hamilton's principle is employed to formulate the governing equations of motion. The effective mechanical properties of the composite material are assessed with regard to CNT agglomeration, which has a significant impact on the elastic modulus and the overall dynamic behavior of the structure. The numerical analysis explores the influence of porosity distribution, boundary conditions (BCs), and the stiffness of the springs on the natural vibration frequencies (NVFs). The results demonstrate that an increase in CNT agglomeration leads to a reduction in the stiffness of the composite, consequently decreasing the NVFs. Furthermore, asymmetric porosity distributions result in nonlinear fluctuations in NVFs due to irregularities in mass and stiffness, whereas uniform porosity distributions display a nearly linear relationship. This study also emphasizes the importance of boundary conditions and elastic coupling in influencing the vibrational response of CBR systems. These findings offer significant insights for the design and optimization of advanced composite ring structures applicable in aerospace, nanotechnology, and high-performance engineering systems.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902752/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050696","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This research examines the free vibration characteristics of composite ring-like structures enhanced with carbon nanotubes (CNTs), taking into account the effects of CNT agglomeration. The structural framework comprises two concentric composite rings linked by elastic springs, creating a coupled beam ring (CBR) system. The first-order shear deformation theory (FSDT) is applied to account for transverse shear deformation, while Hamilton's principle is employed to formulate the governing equations of motion. The effective mechanical properties of the composite material are assessed with regard to CNT agglomeration, which has a significant impact on the elastic modulus and the overall dynamic behavior of the structure. The numerical analysis explores the influence of porosity distribution, boundary conditions (BCs), and the stiffness of the springs on the natural vibration frequencies (NVFs). The results demonstrate that an increase in CNT agglomeration leads to a reduction in the stiffness of the composite, consequently decreasing the NVFs. Furthermore, asymmetric porosity distributions result in nonlinear fluctuations in NVFs due to irregularities in mass and stiffness, whereas uniform porosity distributions display a nearly linear relationship. This study also emphasizes the importance of boundary conditions and elastic coupling in influencing the vibrational response of CBR systems. These findings offer significant insights for the design and optimization of advanced composite ring structures applicable in aerospace, nanotechnology, and high-performance engineering systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信