{"title":"Dissipative Particle Dynamics: Simulation of Chitosan-Citral Microcapsules.","authors":"Wensheng Wu, Zhiwei Li, Dachun Feng, Qing Tang, Shuijiao Liu, Wenjing Lin","doi":"10.3390/polym17050678","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, the dissipative particle dynamics (DPD) method is used to simulate the self-assembly process, appearance, mesoscopic structure, and wrapping properties of microcapsules formed with citral as the core material and chitosan and sodium alginate as the single-wall materials, and with citral as the core material and chitosan-sodium alginate, chitosan-methylcellulose, sodium alginate-chitosan, and sodium alginate-methylcellulose as the double-wall materials. The effects of chitosan content and wall material composition on the structure, morphology, encapsulation performance, and stability of microcapsules are compared and analyzed. In addition, the microcapsules are deeply analyzed by using the mesoscopic structure, radial distribution function, and diffusion coefficient. This study provides a new idea and method for the preparation of citral microcapsules, and is of great significance for the design and development of new composite wall microcapsules.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902801/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050678","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the dissipative particle dynamics (DPD) method is used to simulate the self-assembly process, appearance, mesoscopic structure, and wrapping properties of microcapsules formed with citral as the core material and chitosan and sodium alginate as the single-wall materials, and with citral as the core material and chitosan-sodium alginate, chitosan-methylcellulose, sodium alginate-chitosan, and sodium alginate-methylcellulose as the double-wall materials. The effects of chitosan content and wall material composition on the structure, morphology, encapsulation performance, and stability of microcapsules are compared and analyzed. In addition, the microcapsules are deeply analyzed by using the mesoscopic structure, radial distribution function, and diffusion coefficient. This study provides a new idea and method for the preparation of citral microcapsules, and is of great significance for the design and development of new composite wall microcapsules.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.