Development of Gelatin-Based Renewable Packaging with Melaleuca alternifolia Essential Oil for Chicken Breast Preservation.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-02-27 DOI:10.3390/polym17050646
Rene Pereira de Lima, Daniela de Almeida Carrea, Vitor Augusto Dos Santos Garcia, Cristina Tostes Filgueiras, Farayde Matta Fakhouri, José Ignacio Velasco
{"title":"Development of Gelatin-Based Renewable Packaging with <i>Melaleuca alternifolia</i> Essential Oil for Chicken Breast Preservation.","authors":"Rene Pereira de Lima, Daniela de Almeida Carrea, Vitor Augusto Dos Santos Garcia, Cristina Tostes Filgueiras, Farayde Matta Fakhouri, José Ignacio Velasco","doi":"10.3390/polym17050646","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to develop gelatin-based films incorporating Melaleuca alternifolia essential oil (MEO) and assess their application on refrigerated chicken breasts. The results showed that MEO exhibited antimicrobial activity against <i>Pseudomonas aeruginosa</i> and <i>Salmonella</i> sp., with inhibition zones of 17 mm and 9 mm, respectively. The minimum inhibitory concentration (MIC) was 10% for <i>P. aeruginosa</i> and 15% for <i>Salmonella</i> sp., demonstrating greater efficacy against <i>P. aeruginosa</i>. The antioxidant analysis using the ABTS method revealed activity of 1309 ± 18.0 μM Trolox/g, while the FRAP method resulted in 446 ± 5.78 μM FeSO<sub>4</sub>/g. The characterization of the oil by gas chromatography identified major compounds, including 2-carene, γ-terpinene, terpine-4-ol, and α-terpineol. Incorporating the oil into gelatin films resulted in structural changes, such as an increase in thickness (from 0.059 to 0.127 mm) and water vapor permeability. Furthermore, the addition of MEO conferred homogeneous properties to the films with no visible cracks. The incorporation of MEO into gelatin films has shown ABTS antioxidant activity, and FRAP results showed a significant increase with higher MEO concentrations. The packaged samples retained more mass than the control group, which lost about 90% of its weight during storage. Texture analysis revealed only an 8% variation in the Melaleuca-coated samples compared to 19.6% in the control group. These findings indicate that gelatin films containing <i>Melaleuca</i> essential oil effectively improve the shelf life of chicken breasts.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902632/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050646","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to develop gelatin-based films incorporating Melaleuca alternifolia essential oil (MEO) and assess their application on refrigerated chicken breasts. The results showed that MEO exhibited antimicrobial activity against Pseudomonas aeruginosa and Salmonella sp., with inhibition zones of 17 mm and 9 mm, respectively. The minimum inhibitory concentration (MIC) was 10% for P. aeruginosa and 15% for Salmonella sp., demonstrating greater efficacy against P. aeruginosa. The antioxidant analysis using the ABTS method revealed activity of 1309 ± 18.0 μM Trolox/g, while the FRAP method resulted in 446 ± 5.78 μM FeSO4/g. The characterization of the oil by gas chromatography identified major compounds, including 2-carene, γ-terpinene, terpine-4-ol, and α-terpineol. Incorporating the oil into gelatin films resulted in structural changes, such as an increase in thickness (from 0.059 to 0.127 mm) and water vapor permeability. Furthermore, the addition of MEO conferred homogeneous properties to the films with no visible cracks. The incorporation of MEO into gelatin films has shown ABTS antioxidant activity, and FRAP results showed a significant increase with higher MEO concentrations. The packaged samples retained more mass than the control group, which lost about 90% of its weight during storage. Texture analysis revealed only an 8% variation in the Melaleuca-coated samples compared to 19.6% in the control group. These findings indicate that gelatin films containing Melaleuca essential oil effectively improve the shelf life of chicken breasts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信