Chemically Polymerized Polypyrrole on Glucose-Porcine Skin Gelatin Nanofiber as Multifunctional Electrochemical Actuator-Sensor-Capacitor.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-02-26 DOI:10.3390/polym17050631
Rudolf Kiefer, Toribio F Otero, Madis Harjo, Quoc Bao Le
{"title":"Chemically Polymerized Polypyrrole on Glucose-Porcine Skin Gelatin Nanofiber as Multifunctional Electrochemical Actuator-Sensor-Capacitor.","authors":"Rudolf Kiefer, Toribio F Otero, Madis Harjo, Quoc Bao Le","doi":"10.3390/polym17050631","DOIUrl":null,"url":null,"abstract":"<p><p>Multifunctional materials requiring low functional voltages are the main goal of new industrial smart technologies. Polypyrrole (PPy) was chemically synthesized by a simple dip-coating process on glucose-porcine skin gelatin nanofibers, accelerating mass production, here shown on nanofiber scaffolds (NFs) with those consisting of composites. The isometric and isotonic characterizations by electro-chemo-mechanical deformation (ECMD) of NFS-PPy are obtained from cyclic voltammetric and chronoamperometric responses in lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium triflouromethanesulfonate (LiTF) and sodium perchlorate (NaClO<sub>4</sub>) in propylene carbonate (PC). The results indicate a prevalent anion-driven actuation of the linear actuator (expansion by oxidation and contraction by reduction). Different stress (4-2 kPa) and strain (0.7-0.4%) gradients are a function of the anion Van der Waals volume. During reversible actuation (expansion/contraction), the material stores/releases energy, obtaining greater specific capacitance, 68 F g<sup>-1</sup>, in LiTFSI solutions, keeping 82% of this capacity after 2000 cycles. The sensitivity (the slope of the linear sensing equation) is a characteristic of the exchanged anion. The reaction of the PPy-coated nanofiber is multifunctional, developing simultaneous actuation, sensing, and energy storage. The materials were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902419/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050631","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multifunctional materials requiring low functional voltages are the main goal of new industrial smart technologies. Polypyrrole (PPy) was chemically synthesized by a simple dip-coating process on glucose-porcine skin gelatin nanofibers, accelerating mass production, here shown on nanofiber scaffolds (NFs) with those consisting of composites. The isometric and isotonic characterizations by electro-chemo-mechanical deformation (ECMD) of NFS-PPy are obtained from cyclic voltammetric and chronoamperometric responses in lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium triflouromethanesulfonate (LiTF) and sodium perchlorate (NaClO4) in propylene carbonate (PC). The results indicate a prevalent anion-driven actuation of the linear actuator (expansion by oxidation and contraction by reduction). Different stress (4-2 kPa) and strain (0.7-0.4%) gradients are a function of the anion Van der Waals volume. During reversible actuation (expansion/contraction), the material stores/releases energy, obtaining greater specific capacitance, 68 F g-1, in LiTFSI solutions, keeping 82% of this capacity after 2000 cycles. The sensitivity (the slope of the linear sensing equation) is a characteristic of the exchanged anion. The reaction of the PPy-coated nanofiber is multifunctional, developing simultaneous actuation, sensing, and energy storage. The materials were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信