Jacinta Ricardo, Abel Duarte, Stefano Chiussi, Gabriela V Martins, Felismina T C Moreira
{"title":"Biomimetic Prussian Blue Sensor for Ultrasensitive Direct Detection of Myoglobin.","authors":"Jacinta Ricardo, Abel Duarte, Stefano Chiussi, Gabriela V Martins, Felismina T C Moreira","doi":"10.3390/polym17050630","DOIUrl":null,"url":null,"abstract":"<p><p>This research presents a novel, cost-effective, and scalable approach for the direct detection of myoglobin (Myo) in point-of-care (PoC) applications. In this strategy, redox-active Prussian Blue nanocubes (PBNCs) are applied to a disposable platinum screen-printed electrode (Pt-SPE). Subsequently, a biomimetic sensing layer is generated by electropolymerization of ortho-phenylenediamine (o-PD) in the presence of Myo, which forms molecularly imprinted polymer (MIP) sites by cyclic voltammetry (CV). The electropolymerization process takes place in a potential range of -0.2 V to +0.8 V, for five cycles at a scan rate of 50 mV/s, in a 10 mmol/L o-PD solution. After polymerization, the electrode is incubated in trypsin for 2 h to create Myo-specifically imprinted cavities. The structural and morphological properties of the biomimetic layer were analyzed by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The direct detection of Myo was analyzed by differential pulse voltammetry (DPV). The results showed a linear response to Myo concentrations ranging from 1.0 ag/mL to 10 ng/mL, a limit of detection (LOD) of 0.76 ag/mL, and a R<sup>2</sup> value of 0.9775. The absence of an external liquid redox probe simplifies the sensor design, improves portability, and reduces the complexity of the assay, making it more suitable for PoC.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902790/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050630","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This research presents a novel, cost-effective, and scalable approach for the direct detection of myoglobin (Myo) in point-of-care (PoC) applications. In this strategy, redox-active Prussian Blue nanocubes (PBNCs) are applied to a disposable platinum screen-printed electrode (Pt-SPE). Subsequently, a biomimetic sensing layer is generated by electropolymerization of ortho-phenylenediamine (o-PD) in the presence of Myo, which forms molecularly imprinted polymer (MIP) sites by cyclic voltammetry (CV). The electropolymerization process takes place in a potential range of -0.2 V to +0.8 V, for five cycles at a scan rate of 50 mV/s, in a 10 mmol/L o-PD solution. After polymerization, the electrode is incubated in trypsin for 2 h to create Myo-specifically imprinted cavities. The structural and morphological properties of the biomimetic layer were analyzed by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The direct detection of Myo was analyzed by differential pulse voltammetry (DPV). The results showed a linear response to Myo concentrations ranging from 1.0 ag/mL to 10 ng/mL, a limit of detection (LOD) of 0.76 ag/mL, and a R2 value of 0.9775. The absence of an external liquid redox probe simplifies the sensor design, improves portability, and reduces the complexity of the assay, making it more suitable for PoC.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.