Biodegradation of Polyhydroxybutyrate, Polylactide, and Their Blends by Microorganisms, Including Antarctic Species: Insights from Weight Loss, XRD, and Thermal Studies.
{"title":"Biodegradation of Polyhydroxybutyrate, Polylactide, and Their Blends by Microorganisms, Including Antarctic Species: Insights from Weight Loss, XRD, and Thermal Studies.","authors":"Volodymyr Skorokhoda, Ihor Semeniuk, Taras Peretyatko, Viktoria Kochubei, Oleksandr Ivanukh, Yuriy Melnyk, Yurij Stetsyshyn","doi":"10.3390/polym17050675","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the biodegradation of polyhydroxybutyrate (PHB), polylactide (PLA), and their blends by 11 bacterial species (including Antarctic strains) and 6 fungal species. Aeration significantly enhanced PHB degradation by mold fungi (<i>Aspergillus oryzae</i>, <i>Penicillium chrysogenum</i>) and bacteria (<i>Paenibacillus tundrae</i>, <i>Bacillus mycoides</i>), while <i>Aspergillus awamori</i> was most effective under non-aerated conditions. For PLA, degradation peaked under aeration with <i>Penicillium chrysogenum</i> and <i>Bacillus subtilis</i>. PHB/PLA blends degraded slower overall, with maximum degradation under aeration by <i>Penicillium chrysogenum</i>, <i>Pseudoarthrobacter</i> sp., and <i>Flavobacterium</i> sp. Biodegradation was assessed via weight-loss measurements, X-ray diffraction (XRD), and thermal analysis. PHB samples showed reduced crystallinity and thermal stability linked to weight loss, while PLA samples exhibited varied changes, often with increased crystallinity and stability depending on the microorganism. PHB/PLA blends displayed variable crystallinity changes, generally decreasing under microbial action. The search for effective plastic-degrading microorganisms, particularly from extreme environments like Antarctica, is vital for addressing plastic pollution and advancing sustainable polymer degradation.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902862/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050675","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the biodegradation of polyhydroxybutyrate (PHB), polylactide (PLA), and their blends by 11 bacterial species (including Antarctic strains) and 6 fungal species. Aeration significantly enhanced PHB degradation by mold fungi (Aspergillus oryzae, Penicillium chrysogenum) and bacteria (Paenibacillus tundrae, Bacillus mycoides), while Aspergillus awamori was most effective under non-aerated conditions. For PLA, degradation peaked under aeration with Penicillium chrysogenum and Bacillus subtilis. PHB/PLA blends degraded slower overall, with maximum degradation under aeration by Penicillium chrysogenum, Pseudoarthrobacter sp., and Flavobacterium sp. Biodegradation was assessed via weight-loss measurements, X-ray diffraction (XRD), and thermal analysis. PHB samples showed reduced crystallinity and thermal stability linked to weight loss, while PLA samples exhibited varied changes, often with increased crystallinity and stability depending on the microorganism. PHB/PLA blends displayed variable crystallinity changes, generally decreasing under microbial action. The search for effective plastic-degrading microorganisms, particularly from extreme environments like Antarctica, is vital for addressing plastic pollution and advancing sustainable polymer degradation.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.