Biocontrol Potential of Poly(3-hydroxybutyrate) Fibers Functionalized with Chitooligosaccharide/Bacillus subtilis Using Electrospinning and Electrospraying.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-03-05 DOI:10.3390/polym17050692
Nikoleta Stoyanova, Nasko Nachev, Mladen Naydenov, Iliyana Valcheva, Mariya Spasova, Olya Stoilova
{"title":"Biocontrol Potential of Poly(3-hydroxybutyrate) Fibers Functionalized with Chitooligosaccharide/<i>Bacillus subtilis</i> Using Electrospinning and Electrospraying.","authors":"Nikoleta Stoyanova, Nasko Nachev, Mladen Naydenov, Iliyana Valcheva, Mariya Spasova, Olya Stoilova","doi":"10.3390/polym17050692","DOIUrl":null,"url":null,"abstract":"<p><p>Sustainable agriculture increasingly relies on biocontrol agents as eco-friendly solutions to combat plant diseases while improving soil health. In this context, species of the genus <i>Bacillus</i>, particularly <i>Bacillus subtilis</i>, have shown promise as effective biocontrol agents for plant diseases. This study demonstrates the successful fabrication of biohybrid materials by decorating electrospun poly(3-hydroxybutyrate) (PHB) fibers with electrosprayed chitooligosaccharide (COS) and <i>Bacillus subtilis</i> using simultaneous electrospinning and electrospraying. During electrospraying, COS formed a uniform film over the PHB fibers, serving as both an adhesive and a protective coating that maintained the viability and functionality of the embedded bacteria. SEM confirmed that bacterial spores were uniformly spread across the COS-coated biopolymer fibers. ATR-FTIR spectroscopy verified the successful deposition of COS on the fibers, while mechanical assay demonstrated enhancement in mechanical characteristics after the COS film formation on the PHB fibers compared to uncoated PHB. In addition, COS improved the wetting properties of the fibrous PHB material, creating a favorable environment for bacterial growth and development. Microbiological tests showed that the embedded <i>B. subtilis</i> remained viable and proliferated normally after 48 h under suitable conditions at 28 °C on agar medium. Furthermore, the biohybrid COS/<i>B. subtilis</i>-<i>on</i>-PHB materials also effectively inhibited the growth of pathogenic fungi, including species of <i>Alternaria</i> and <i>Fusarium</i>. These findings highlight the potential of dual electrospinning/electrospraying techniques for the fabrication of eco-friendly biocontrol formulations. The integration of COS coatings with <i>B. subtilis</i> provides a promising approach for sustainable agriculture by combining enhanced material properties with effective antifungal activity.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902310/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050692","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Sustainable agriculture increasingly relies on biocontrol agents as eco-friendly solutions to combat plant diseases while improving soil health. In this context, species of the genus Bacillus, particularly Bacillus subtilis, have shown promise as effective biocontrol agents for plant diseases. This study demonstrates the successful fabrication of biohybrid materials by decorating electrospun poly(3-hydroxybutyrate) (PHB) fibers with electrosprayed chitooligosaccharide (COS) and Bacillus subtilis using simultaneous electrospinning and electrospraying. During electrospraying, COS formed a uniform film over the PHB fibers, serving as both an adhesive and a protective coating that maintained the viability and functionality of the embedded bacteria. SEM confirmed that bacterial spores were uniformly spread across the COS-coated biopolymer fibers. ATR-FTIR spectroscopy verified the successful deposition of COS on the fibers, while mechanical assay demonstrated enhancement in mechanical characteristics after the COS film formation on the PHB fibers compared to uncoated PHB. In addition, COS improved the wetting properties of the fibrous PHB material, creating a favorable environment for bacterial growth and development. Microbiological tests showed that the embedded B. subtilis remained viable and proliferated normally after 48 h under suitable conditions at 28 °C on agar medium. Furthermore, the biohybrid COS/B. subtilis-on-PHB materials also effectively inhibited the growth of pathogenic fungi, including species of Alternaria and Fusarium. These findings highlight the potential of dual electrospinning/electrospraying techniques for the fabrication of eco-friendly biocontrol formulations. The integration of COS coatings with B. subtilis provides a promising approach for sustainable agriculture by combining enhanced material properties with effective antifungal activity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信