{"title":"Development and Characterization of Antimicrobial Chitosan/Polyethylene Oxide/Bacterial Cellulose Nanofibers.","authors":"Fatma Sude Cetin, Tubanur Avci, Emre Uygur, Elif Ilhan, Elif Kaya, Gulgun Bosgelmez Tinaz, Liviu Duta, Canan Dogan, Oguzhan Gunduz","doi":"10.3390/polym17050693","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces novel chitosan (CS) and polyethylene oxide (PEO) copolymers reinforced with bacterial cellulose (BC) to fabricate nanofibers using the electrospinning method. SEM analysis confirmed uniform nanofiber formation, with CS/PEO/BC nanofibers (~240 nm) exhibiting a larger diameter than CS/PEO ones (~190 nm). FTIR spectroscopy confirmed BC integration, while Differential scanning calorimetry analysis indicated minimal impact on glass transition temperature. Notably, as compared to CS/PEO nanofibers, the CS/PEO/BC ones demonstrated superior swelling capacity, accelerated biodegradation, and enhanced mechanical (i.e., tensile) properties, with maximum stress and strain values of ~3.41 MPa and ~0.01% vs. ~2.14 MPa and ~0.01%. Antimicrobial assays confirmed activity against bacterial strains, and biocompatibility tests showed high cell viability at day seven (99.26% for CS/PEO/BC nanofibers). These findings highlight the potential of CS/PEO/BC nanofibers as promising candidates for tissue engineering, offering improved strength, biodegradability, and antimicrobial properties.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050693","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces novel chitosan (CS) and polyethylene oxide (PEO) copolymers reinforced with bacterial cellulose (BC) to fabricate nanofibers using the electrospinning method. SEM analysis confirmed uniform nanofiber formation, with CS/PEO/BC nanofibers (~240 nm) exhibiting a larger diameter than CS/PEO ones (~190 nm). FTIR spectroscopy confirmed BC integration, while Differential scanning calorimetry analysis indicated minimal impact on glass transition temperature. Notably, as compared to CS/PEO nanofibers, the CS/PEO/BC ones demonstrated superior swelling capacity, accelerated biodegradation, and enhanced mechanical (i.e., tensile) properties, with maximum stress and strain values of ~3.41 MPa and ~0.01% vs. ~2.14 MPa and ~0.01%. Antimicrobial assays confirmed activity against bacterial strains, and biocompatibility tests showed high cell viability at day seven (99.26% for CS/PEO/BC nanofibers). These findings highlight the potential of CS/PEO/BC nanofibers as promising candidates for tissue engineering, offering improved strength, biodegradability, and antimicrobial properties.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.