Mariana Ramirez, Eya Ben Khalifa, Giuliana Magnacca, Mario Sergio Moreno, María E Parolo, Luciano Carlos
{"title":"Removal and Recovery of AgNPs from Water by Sustainable Magnetic Nanoflocculants.","authors":"Mariana Ramirez, Eya Ben Khalifa, Giuliana Magnacca, Mario Sergio Moreno, María E Parolo, Luciano Carlos","doi":"10.3390/polym17050650","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of silver nanoparticles (AgNPs) in water bodies has emerged as a new environmental concern and the efficient separation of these nanoparticles remains a critical challenge. Here, we developed novel magnetic nanoflocculants for the recovery of AgNPs from water. Alternating layers of biopolymers, in particular, chitosan, alginate, and polymeric bio-based soluble substances (BBS) derived from urban waste, were coated on magnetic nanoparticles via the layer-by-layer technique to prepare reusable magnetic nanoflocculants (MNFs). The MNFs obtained were characterized with diverse physicochemical techniques. Surface response methodology, based on the Doehlert matrix, has shown to be a useful tool to determine the effect of pH (in the range 5-9), concentration of AgNPs (7-20 mg L<sup>-1</sup>), and MNFs (50-1000 mg L<sup>-1</sup>) on the performance of AgNPs removal. The model predicts a high AgNPs removal percentage at low pH values and high MNF concentration. In particular, for the most efficient MNFs, 90% of AgNPs removal was obtained at pH 5 and 600 mg L<sup>-1</sup> MNF concentration. Additionally, the effects of AgNPs size, ionic strength, the presence of humic acids, and two types of surfactants (LAS anionic and TWEEN 20 nonionic) on the AgNPs removal were evaluated. Finally, recovery and reuse experiments showed that MNF made of Chitosan-BBS can be reused in ten cycles, losing only 30% of the initial removal capacity. Therefore, magnetic flocculation could represent a sustainable alternative for AgNPs separation with potential applications in water treatment and remediation of nanoparticle contamination.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902812/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050650","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of silver nanoparticles (AgNPs) in water bodies has emerged as a new environmental concern and the efficient separation of these nanoparticles remains a critical challenge. Here, we developed novel magnetic nanoflocculants for the recovery of AgNPs from water. Alternating layers of biopolymers, in particular, chitosan, alginate, and polymeric bio-based soluble substances (BBS) derived from urban waste, were coated on magnetic nanoparticles via the layer-by-layer technique to prepare reusable magnetic nanoflocculants (MNFs). The MNFs obtained were characterized with diverse physicochemical techniques. Surface response methodology, based on the Doehlert matrix, has shown to be a useful tool to determine the effect of pH (in the range 5-9), concentration of AgNPs (7-20 mg L-1), and MNFs (50-1000 mg L-1) on the performance of AgNPs removal. The model predicts a high AgNPs removal percentage at low pH values and high MNF concentration. In particular, for the most efficient MNFs, 90% of AgNPs removal was obtained at pH 5 and 600 mg L-1 MNF concentration. Additionally, the effects of AgNPs size, ionic strength, the presence of humic acids, and two types of surfactants (LAS anionic and TWEEN 20 nonionic) on the AgNPs removal were evaluated. Finally, recovery and reuse experiments showed that MNF made of Chitosan-BBS can be reused in ten cycles, losing only 30% of the initial removal capacity. Therefore, magnetic flocculation could represent a sustainable alternative for AgNPs separation with potential applications in water treatment and remediation of nanoparticle contamination.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.