Two Methods for Superposing the Structures of Like-Molecule Assemblies: Application to Peptide and Protein Oligomers and Aggregates.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Adam Liwo, Mateusz Leśniewski
{"title":"Two Methods for Superposing the Structures of Like-Molecule Assemblies: Application to Peptide and Protein Oligomers and Aggregates.","authors":"Adam Liwo, Mateusz Leśniewski","doi":"10.3390/molecules30051156","DOIUrl":null,"url":null,"abstract":"<p><p>Two algorithms are proposed for the superposition of assemblies of like molecules (e.g., peptide and proteins homooligomers and homoaggregates), which do not require examining all permutations of the molecules. Both start from searching the mutual orientation of the two assemblies over a grid of quaternion components for the sub-optimal mapping and orientation of the molecules of the second to those of the first assembly. The first one, termed Like-Molecule Assembly Distance Alignment (LMADA), uses Singular Value Decomposition to superpose the two assemblies, given the sub-optimal mapping. The second one, termed Like-Molecule Assembly Gaussian Distance Alignment (LMAGDA), minimizes the negative of the logarithm of the sum of the Gaussian terms in the distances between the corresponding atoms/sites of all pairs of molecules of the two assemblies in quaternion components, starting from those estimated in the first stage. Both algorithms yield as good or nearly as good superposition, in terms of root mean square deviation (RMSD), as examining all permutations to find the lowest RMSD. LMADA results in lower RMSDs, while LMAGDA in a better alignment of the geometrically matching sections of the assemblies. The costs of the proposed algorithms scale only with N2, <i>N</i> being the number of molecules in the assembly, as opposed to N! when examining all permutations.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902252/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30051156","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Two algorithms are proposed for the superposition of assemblies of like molecules (e.g., peptide and proteins homooligomers and homoaggregates), which do not require examining all permutations of the molecules. Both start from searching the mutual orientation of the two assemblies over a grid of quaternion components for the sub-optimal mapping and orientation of the molecules of the second to those of the first assembly. The first one, termed Like-Molecule Assembly Distance Alignment (LMADA), uses Singular Value Decomposition to superpose the two assemblies, given the sub-optimal mapping. The second one, termed Like-Molecule Assembly Gaussian Distance Alignment (LMAGDA), minimizes the negative of the logarithm of the sum of the Gaussian terms in the distances between the corresponding atoms/sites of all pairs of molecules of the two assemblies in quaternion components, starting from those estimated in the first stage. Both algorithms yield as good or nearly as good superposition, in terms of root mean square deviation (RMSD), as examining all permutations to find the lowest RMSD. LMADA results in lower RMSDs, while LMAGDA in a better alignment of the geometrically matching sections of the assemblies. The costs of the proposed algorithms scale only with N2, N being the number of molecules in the assembly, as opposed to N! when examining all permutations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信