Spectroscopic Characterization Using 1H and 13C Nuclear Magnetic Resonance and Computational Analysis of the Complex of Donepezil with 2,6-Methyl-β-Cyclodextrin and Hydroxy Propyl Methyl Cellulose.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nikoletta Zoupanou, Paraskevi Papakyriakopoulou, Nikitas Georgiou, Antigoni Cheilari, Uroš Javornik, Peter Podbevsek, Demeter Tzeli, Georgia Valsami, Thomas Mavromoustakos
{"title":"Spectroscopic Characterization Using <sup>1</sup>H and <sup>13</sup>C Nuclear Magnetic Resonance and Computational Analysis of the Complex of Donepezil with 2,6-Methyl-β-Cyclodextrin and Hydroxy Propyl Methyl Cellulose.","authors":"Nikoletta Zoupanou, Paraskevi Papakyriakopoulou, Nikitas Georgiou, Antigoni Cheilari, Uroš Javornik, Peter Podbevsek, Demeter Tzeli, Georgia Valsami, Thomas Mavromoustakos","doi":"10.3390/molecules30051169","DOIUrl":null,"url":null,"abstract":"<p><p>Donepezil (DH), a selective acetylcholinesterase inhibitor, is widely used to manage symptoms of mild to moderate Alzheimer's disease by enhancing cholinergic neurotransmission and preventing acetylcholine breakdown. Despite the effectiveness of oral formulations, extensive hepatic metabolism and low systemic bioavailability have driven the search for alternative delivery systems. This study focuses on nasal delivery as a non-parenteral substitute, utilizing hydroxypropyl methylcellulose (HPMC) for its mucoadhesive properties and methyl-β-cyclodextrin (Me-β-CD) for its ability to enhance permeability and form inclusion complexes with drugs. Prior studies demonstrated the potential of HPMC-based nasal films for nose-to-brain delivery of donepezil and highlighted Me-β-CD's role in improving drug solubility. Building on this, transparent gel formulations containing DH, HPMC, and 2,6 Me-β-CD were developed to investigate molecular interactions within two- and three-component systems. This study utilized a combination of nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) to provide detailed insights into the interactions between DH, 2,6-Me-β-CD, and HPMC. The findings provide critical insights into drug-excipient interactions, aiding the optimization of stability, solubility, and controlled release. This advances the rational design of nanotechnology-based drug delivery systems for enhanced therapeutic efficacy.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902010/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30051169","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Donepezil (DH), a selective acetylcholinesterase inhibitor, is widely used to manage symptoms of mild to moderate Alzheimer's disease by enhancing cholinergic neurotransmission and preventing acetylcholine breakdown. Despite the effectiveness of oral formulations, extensive hepatic metabolism and low systemic bioavailability have driven the search for alternative delivery systems. This study focuses on nasal delivery as a non-parenteral substitute, utilizing hydroxypropyl methylcellulose (HPMC) for its mucoadhesive properties and methyl-β-cyclodextrin (Me-β-CD) for its ability to enhance permeability and form inclusion complexes with drugs. Prior studies demonstrated the potential of HPMC-based nasal films for nose-to-brain delivery of donepezil and highlighted Me-β-CD's role in improving drug solubility. Building on this, transparent gel formulations containing DH, HPMC, and 2,6 Me-β-CD were developed to investigate molecular interactions within two- and three-component systems. This study utilized a combination of nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) to provide detailed insights into the interactions between DH, 2,6-Me-β-CD, and HPMC. The findings provide critical insights into drug-excipient interactions, aiding the optimization of stability, solubility, and controlled release. This advances the rational design of nanotechnology-based drug delivery systems for enhanced therapeutic efficacy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信