Faberidilactone A, a Sesquiterpene Dimer, Inhibits Hepatocellular Carcinoma Progression Through Apoptosis, Ferroptosis, and Anti-Metastatic Mechanisms.
{"title":"Faberidilactone A, a Sesquiterpene Dimer, Inhibits Hepatocellular Carcinoma Progression Through Apoptosis, Ferroptosis, and Anti-Metastatic Mechanisms.","authors":"Ruyu Cao, Yuhui Liu, Jiahe Bao, Mingming Rong, Jing Xu, Haibing Liao, Yuanqiang Guo","doi":"10.3390/molecules30051095","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer remains a significant global public health challenge, with hepatocellular carcinoma (HCC) ranking among the top five malignancies in terms of mortality. Faberidilactone A, a sesquiterpenoid dimer isolated from <i>Inula japonica</i>, exhibits potent cytotoxicity against various human tumor cell lines and demonstrates remarkable antitumor potential. In vitro studies using HepG2 cells revealed that faberidilactone A induces apoptosis and ferroptosis, causes cell cycle arrest, enhances the production of intracellular reactive oxygen species (ROS), and disrupts mitochondrial function. Mechanistic investigations via Western blot analysis indicated that faberidilactone A impedes HepG2 cell proliferation by modulating the signal transducer and activator of the transcription 3 (STAT3) signaling pathway and inhibits metastasis by affecting the focal adhesion kinase (FAK) pathway. In vivo experiments using a zebrafish model demonstrated that faberidilactone A effectively suppresses the dissemination and metastasis of HepG2 cells and exhibits anti-angiogenic properties. When the concentration of faberidilactone A reached 10 µM, the inhibition rates of tumor proliferation, migration, and intersegmental vessels (ISVs) length were 76.9%, 72.6%, and 46.2%, respectively. These findings underscore the therapeutic potential of faberidilactone A as a promising agent for HCC treatment.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901444/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30051095","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer remains a significant global public health challenge, with hepatocellular carcinoma (HCC) ranking among the top five malignancies in terms of mortality. Faberidilactone A, a sesquiterpenoid dimer isolated from Inula japonica, exhibits potent cytotoxicity against various human tumor cell lines and demonstrates remarkable antitumor potential. In vitro studies using HepG2 cells revealed that faberidilactone A induces apoptosis and ferroptosis, causes cell cycle arrest, enhances the production of intracellular reactive oxygen species (ROS), and disrupts mitochondrial function. Mechanistic investigations via Western blot analysis indicated that faberidilactone A impedes HepG2 cell proliferation by modulating the signal transducer and activator of the transcription 3 (STAT3) signaling pathway and inhibits metastasis by affecting the focal adhesion kinase (FAK) pathway. In vivo experiments using a zebrafish model demonstrated that faberidilactone A effectively suppresses the dissemination and metastasis of HepG2 cells and exhibits anti-angiogenic properties. When the concentration of faberidilactone A reached 10 µM, the inhibition rates of tumor proliferation, migration, and intersegmental vessels (ISVs) length were 76.9%, 72.6%, and 46.2%, respectively. These findings underscore the therapeutic potential of faberidilactone A as a promising agent for HCC treatment.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.