Dong Zhu, Chunfeng Wang, Xiaohuai Wang, Shun Han, Yuxiang Zeng, Ming Fang, Wenjun Liu, Deliang Zhu, Peijiang Cao, Youming Lu
{"title":"Enhanced Luminescence and Thermal Stability in High Gd<sup>3+</sup>/Eu<sup>3+</sup> Co-Doped Ba<sub>3</sub>Y<sub>4</sub>O<sub>9</sub> Phosphors via Co-Precipitation Method.","authors":"Dong Zhu, Chunfeng Wang, Xiaohuai Wang, Shun Han, Yuxiang Zeng, Ming Fang, Wenjun Liu, Deliang Zhu, Peijiang Cao, Youming Lu","doi":"10.3390/molecules30051085","DOIUrl":null,"url":null,"abstract":"<p><p>The co-precipitation method was successfully used to synthesize Ba<sub>3</sub>(Y<sub>0.6-x</sub>Gd<sub>0.4</sub>Eu<sub>x</sub>)<sub>4</sub>O<sub>9</sub> (0.01 ≤ x ≤ 0.09) phosphors with heavy Gd<sup>3+</sup> doping, resulting in significantly enhanced thermal stability and luminescence performance. Structural analyses confirm that Gd<sup>3+</sup> and Eu<sup>3+</sup> ions substitute Y<sup>3+</sup> in the lattice, causing lattice expansion and improving crystal asymmetry, which enhances Eu<sup>3+</sup> emission. The incorporation of Gd<sup>3+</sup> creates efficient energy transfer pathways to Eu<sup>3+</sup> while suppressing non-radiative relaxation, leading to stable fluorescence lifetimes even at elevated temperatures. With a thermal activation energy of ~0.3051 eV, the Ba<sub>3</sub>(Y<sub>0.55</sub>Gd<sub>0.4</sub>Eu<sub>0.05</sub>)<sub>4</sub>O<sub>9</sub> phosphor exhibits superior resistance to thermal quenching compared to Ba<sub>3</sub>(Y<sub>0.95</sub>Eu<sub>0.05</sub>)<sub>4</sub>O<sub>9</sub> and many conventional red phosphors. Furthermore, the reduced color temperature and stable emission spectra across a wide temperature range highlight its potential for advanced lighting and display technologies in high-temperature environments.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30051085","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The co-precipitation method was successfully used to synthesize Ba3(Y0.6-xGd0.4Eux)4O9 (0.01 ≤ x ≤ 0.09) phosphors with heavy Gd3+ doping, resulting in significantly enhanced thermal stability and luminescence performance. Structural analyses confirm that Gd3+ and Eu3+ ions substitute Y3+ in the lattice, causing lattice expansion and improving crystal asymmetry, which enhances Eu3+ emission. The incorporation of Gd3+ creates efficient energy transfer pathways to Eu3+ while suppressing non-radiative relaxation, leading to stable fluorescence lifetimes even at elevated temperatures. With a thermal activation energy of ~0.3051 eV, the Ba3(Y0.55Gd0.4Eu0.05)4O9 phosphor exhibits superior resistance to thermal quenching compared to Ba3(Y0.95Eu0.05)4O9 and many conventional red phosphors. Furthermore, the reduced color temperature and stable emission spectra across a wide temperature range highlight its potential for advanced lighting and display technologies in high-temperature environments.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.