{"title":"Performance and Mechanism of Hydrolyzed Keratin for Hair Photoaging Prevention.","authors":"Jiayi Fan, Lei Wu, Jing Wang, Xiaoying Bian, Chongchong Chen, Kuan Chang","doi":"10.3390/molecules30051182","DOIUrl":null,"url":null,"abstract":"<p><p>Photoaging is common and represents one of the primary pathways for hair damage in daily life. Hydrolyzed keratin, which is usually derived from wool and consists of a series of polypeptide molecules, has been investigated as a UV damage prevention ingredient for hair care. Scanning Electron Microscopy (SEM) and fluorescent penetration experiments verified that hydrolyzed keratin can deposit on the hair cuticles to form a film and partly penetrate into the hair cortex. This film played as a UV reducer and helped hair resist surface damage and maintain a sleek and healthy morphology after UV radiation. Surprisingly, it was found that hydrolyzed keratin treatment combined with subsequent UV radiation could significantly improve the tensile properties of hair. For hydrolyzed-keratin-treated hair, tensile strength was maintained after UV radiation, while, as a comparison, it decreased by 14.32% for untreated hair. This phenomenon is explained by a UV-induced degradation-penetration mechanism. During UV radiation, an increase in free amino acid content and conductivity was observed for the hydrolyzed keratin solution, demonstrating photodegradation into smaller peptides and amino acids. The degradation of hydrolyzed keratin allowed it to more easily enter the interior of the hair cortex, thereby enhancing its tensile properties by enhancing the chemical bonds.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902160/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30051182","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Photoaging is common and represents one of the primary pathways for hair damage in daily life. Hydrolyzed keratin, which is usually derived from wool and consists of a series of polypeptide molecules, has been investigated as a UV damage prevention ingredient for hair care. Scanning Electron Microscopy (SEM) and fluorescent penetration experiments verified that hydrolyzed keratin can deposit on the hair cuticles to form a film and partly penetrate into the hair cortex. This film played as a UV reducer and helped hair resist surface damage and maintain a sleek and healthy morphology after UV radiation. Surprisingly, it was found that hydrolyzed keratin treatment combined with subsequent UV radiation could significantly improve the tensile properties of hair. For hydrolyzed-keratin-treated hair, tensile strength was maintained after UV radiation, while, as a comparison, it decreased by 14.32% for untreated hair. This phenomenon is explained by a UV-induced degradation-penetration mechanism. During UV radiation, an increase in free amino acid content and conductivity was observed for the hydrolyzed keratin solution, demonstrating photodegradation into smaller peptides and amino acids. The degradation of hydrolyzed keratin allowed it to more easily enter the interior of the hair cortex, thereby enhancing its tensile properties by enhancing the chemical bonds.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.