{"title":"Research on the Evolution Characteristics and Influencing Factors of Foamy Oil Bubbles in Porous Media.","authors":"Moxi Zhang, Xinglong Chen, Weifeng Lyu","doi":"10.3390/molecules30051163","DOIUrl":null,"url":null,"abstract":"<p><p>This study systematically investigates the formation mechanism and development characteristics of the \"foamy oil\" phenomenon during pressure depletion development of high-viscosity crude oil through a combination of physical experiments and numerical simulations. Using Venezuelan foamy oil as the research subject, an innovative heterogeneous pore-etched glass model was constructed to simulate the pressure depletion process, revealing for the first time that bubble growth predominantly occurs during the migration stage. Experimental results demonstrate that heavy components significantly delay degassing by stabilizing gas-liquid interfaces, while the continuous gas-liquid diffusion effect explains the unique development characteristics of foamy oil-high oil recovery and delayed phase transition-from a microscopic perspective. A multi-scale coupling analysis method was established: molecular-scale simulations were employed to model component diffusion behavior. By improving the traditional Volume of Fluid (VOF) method and introducing diffusion coefficients, a synergistic model integrating a single momentum equation and fluid volume fraction was developed to quantitatively characterize the dynamic evolution of bubbles. Simulation results indicate significant differences in dominant controlling factors: oil phase viscosity has the greatest influence (accounting for ~50%), followed by gas component content (~35%), and interfacial tension the least (~15%). Based on multi-factor coupling analysis, an empirical formula for bubble growth incorporating diffusion coefficients was proposed, elucidating the intrinsic mechanism by which heavy components induce unique development effects through interfacial stabilization, viscous inhibition, and dynamic diffusion. This research breaks through the limitations of traditional production dynamic analysis, establishing a theoretical model for foamy oil development from the perspective of molecular-phase behavior combined with flow characteristics. It not only provides a rational explanation for the \"high oil production, low gas production\" phenomenon but also offers theoretical support for optimizing extraction processes (e.g., gas component regulation, viscosity control) through quantified parameter weightings. The findings hold significant scientific value for advancing heavy oil recovery theory and guiding efficient foamy oil development. Future work will extend to studying multiphase flow coupling mechanisms in porous media, laying a theoretical foundation for intelligent control technology development.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901648/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30051163","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study systematically investigates the formation mechanism and development characteristics of the "foamy oil" phenomenon during pressure depletion development of high-viscosity crude oil through a combination of physical experiments and numerical simulations. Using Venezuelan foamy oil as the research subject, an innovative heterogeneous pore-etched glass model was constructed to simulate the pressure depletion process, revealing for the first time that bubble growth predominantly occurs during the migration stage. Experimental results demonstrate that heavy components significantly delay degassing by stabilizing gas-liquid interfaces, while the continuous gas-liquid diffusion effect explains the unique development characteristics of foamy oil-high oil recovery and delayed phase transition-from a microscopic perspective. A multi-scale coupling analysis method was established: molecular-scale simulations were employed to model component diffusion behavior. By improving the traditional Volume of Fluid (VOF) method and introducing diffusion coefficients, a synergistic model integrating a single momentum equation and fluid volume fraction was developed to quantitatively characterize the dynamic evolution of bubbles. Simulation results indicate significant differences in dominant controlling factors: oil phase viscosity has the greatest influence (accounting for ~50%), followed by gas component content (~35%), and interfacial tension the least (~15%). Based on multi-factor coupling analysis, an empirical formula for bubble growth incorporating diffusion coefficients was proposed, elucidating the intrinsic mechanism by which heavy components induce unique development effects through interfacial stabilization, viscous inhibition, and dynamic diffusion. This research breaks through the limitations of traditional production dynamic analysis, establishing a theoretical model for foamy oil development from the perspective of molecular-phase behavior combined with flow characteristics. It not only provides a rational explanation for the "high oil production, low gas production" phenomenon but also offers theoretical support for optimizing extraction processes (e.g., gas component regulation, viscosity control) through quantified parameter weightings. The findings hold significant scientific value for advancing heavy oil recovery theory and guiding efficient foamy oil development. Future work will extend to studying multiphase flow coupling mechanisms in porous media, laying a theoretical foundation for intelligent control technology development.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.