Emanuel Gheorghita Armanu, Simone Bertoldi, Matthias Schmidt, Hermann J Heipieper, Irina Volf, Christian Eberlein
{"title":"Hydrochar from Agricultural Waste as a Biobased Support Matrix Enhances the Bacterial Degradation of Diethyl Phthalate.","authors":"Emanuel Gheorghita Armanu, Simone Bertoldi, Matthias Schmidt, Hermann J Heipieper, Irina Volf, Christian Eberlein","doi":"10.3390/molecules30051167","DOIUrl":null,"url":null,"abstract":"<p><p>The hydrothermal carbonization (HTC) of biomass presents a sustainable approach for waste management and production of value-added materials such as hydrochar, which holds promise as an adsorbent and support matrix for bacterial immobilization applied, e.g., for bioremediation processes of sites contaminated with phthalate ester plasticizers such as diethyl phthalate (DEP). In the present study, hydrochar was synthesized from vine shoots (VSs) biomass employing the following parameters during the HTC process: 260 °C for 30 min with a 1:10 (<i>w</i>/<i>v</i>) biomass-to-water ratio. The resulting vine shoots hydrochar (VSs-HC) was characterized for porosity, elemental composition, and structural properties using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Raman spectroscopy. Elemental analysis confirmed the presence of key elements in the VSs structure, elements essential for char formation during the HTC process. The VSs-HC exhibited a macroporous structure (>0.5 μm), facilitating diethyl phthalate (DEP) adsorption, bacterial adhesion, and biofilm formation. Adsorption studies showed that the VSs-HC achieved a 90% removal rate for 4 mM DEP within the first hour of contact. Furthermore, VS-HC was tested as a support matrix for a bacterial consortium (<i>Pseudomonas</i> spp. and <i>Microbacterium</i> sp.) known to degrade DEP. The immobilized bacterial consortium on VSs-HC demonstrated enhanced tolerance to DEP toxicity, degrading 76% of 8 mM DEP within 24 h, compared with 14% by planktonic cultures. This study highlights VSs-HC's potential as a sustainable and cost-effective material for environmental bioremediation, offering enhanced bacterial cell viability, improved biofilm formation, and efficient plasticizer removal. These findings provide a pathway for mitigating environmental pollution through scalable and low-cost solutions.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30051167","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrothermal carbonization (HTC) of biomass presents a sustainable approach for waste management and production of value-added materials such as hydrochar, which holds promise as an adsorbent and support matrix for bacterial immobilization applied, e.g., for bioremediation processes of sites contaminated with phthalate ester plasticizers such as diethyl phthalate (DEP). In the present study, hydrochar was synthesized from vine shoots (VSs) biomass employing the following parameters during the HTC process: 260 °C for 30 min with a 1:10 (w/v) biomass-to-water ratio. The resulting vine shoots hydrochar (VSs-HC) was characterized for porosity, elemental composition, and structural properties using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Raman spectroscopy. Elemental analysis confirmed the presence of key elements in the VSs structure, elements essential for char formation during the HTC process. The VSs-HC exhibited a macroporous structure (>0.5 μm), facilitating diethyl phthalate (DEP) adsorption, bacterial adhesion, and biofilm formation. Adsorption studies showed that the VSs-HC achieved a 90% removal rate for 4 mM DEP within the first hour of contact. Furthermore, VS-HC was tested as a support matrix for a bacterial consortium (Pseudomonas spp. and Microbacterium sp.) known to degrade DEP. The immobilized bacterial consortium on VSs-HC demonstrated enhanced tolerance to DEP toxicity, degrading 76% of 8 mM DEP within 24 h, compared with 14% by planktonic cultures. This study highlights VSs-HC's potential as a sustainable and cost-effective material for environmental bioremediation, offering enhanced bacterial cell viability, improved biofilm formation, and efficient plasticizer removal. These findings provide a pathway for mitigating environmental pollution through scalable and low-cost solutions.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.