Meihan Lu, Lijun Sun, Dongxin Yang, Zewen Nie, Weitao Gong
{"title":"New Viologen-Based Ionic Porous Organic Polymers for Efficient Removal of Anionic Dyes and Hexavalent Chromium (Cr (VI)) from Water.","authors":"Meihan Lu, Lijun Sun, Dongxin Yang, Zewen Nie, Weitao Gong","doi":"10.3390/molecules30051123","DOIUrl":null,"url":null,"abstract":"<p><p>Water pollution is a critical environmental issue in modern society, and adsorption is recognized as a straightforward and efficient water purification technique. In this study, three new viologen-based ionic porous organic polymers were designed and successfully synthesized via a simple approach, and their adsorption properties for water pollutants were evaluated. The cationic nature of these polymers, coupled with their large conjugated π-electron system, physicochemical stability, and aromatic backbone, contributes to their high adsorption capacity and rapid adsorption efficiency for anionic contaminants in water such as Methyl Orange, Congo Red, and Cr (VI). The polymers exhibited maximum adsorption capacities of 1617 mg/g for MO, 3734 mg/g for CR, and 530.22 mg/g for Cr (VI), surpassing most previously reported adsorbents. Furthermore, the polymers maintained a high removal rate even in the presence of competing anions. Effective separation of anionic dyes from mixed solutions could be achieved through simple filtration. These characteristics make them promising candidates for water purification applications.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901743/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30051123","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Water pollution is a critical environmental issue in modern society, and adsorption is recognized as a straightforward and efficient water purification technique. In this study, three new viologen-based ionic porous organic polymers were designed and successfully synthesized via a simple approach, and their adsorption properties for water pollutants were evaluated. The cationic nature of these polymers, coupled with their large conjugated π-electron system, physicochemical stability, and aromatic backbone, contributes to their high adsorption capacity and rapid adsorption efficiency for anionic contaminants in water such as Methyl Orange, Congo Red, and Cr (VI). The polymers exhibited maximum adsorption capacities of 1617 mg/g for MO, 3734 mg/g for CR, and 530.22 mg/g for Cr (VI), surpassing most previously reported adsorbents. Furthermore, the polymers maintained a high removal rate even in the presence of competing anions. Effective separation of anionic dyes from mixed solutions could be achieved through simple filtration. These characteristics make them promising candidates for water purification applications.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.