Modern Comprehensive Metabolomic Profiling of Pollen Using Various Analytical Techniques.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Petra Krejčí, Zbyněk Žingor, Jana Balarynová, Andrea Čevelová, Matěj Tesárek, Petr Smýkal, Petr Bednář
{"title":"Modern Comprehensive Metabolomic Profiling of Pollen Using Various Analytical Techniques.","authors":"Petra Krejčí, Zbyněk Žingor, Jana Balarynová, Andrea Čevelová, Matěj Tesárek, Petr Smýkal, Petr Bednář","doi":"10.3390/molecules30051172","DOIUrl":null,"url":null,"abstract":"<p><p>Pollen is a cornerstone of life for plants. Its durability, adaptability, and complex design are the key factors to successful plant reproduction, genetic diversity, and the maintenance of ecosystems. A detailed study of its chemical composition is important to understand the mechanism of pollen-pollinator interactions, pollination processes, and allergic reactions. In this study, a multimodal approach involving Fourier transform infrared spectrometry (FTIR), direct mass spectrometry with an atmospheric solids analysis probe (ASAP), matrix-assisted laser desorption/ionization (MALDI) and ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was applied for metabolite profiling. ATR-FTIR provided an initial overview of the present metabolite classes. Phenylpropanoid, lipidic, and carbohydrate structures were revealed. The hydrophobic outer layer of pollen was characterized in detail by ASAP-MS profiling, and esters, phytosterols, and terpenoids were observed. Diacyl- and triacylglycerols and carbohydrate structures were identified in MALDI-MS spectra. The MALDI-MS imaging of lipids proved to be helpful during the microscopic characterization of pollen species in their mixture. Polyphenol profiling and the quantification of important secondary metabolites were performed by UHPLC-MS in context with pollen coloration and their antioxidant and antimicrobial properties. The obtained results revealed significant chemical differences among Magnoliophyta and Pinophyta pollen. Additionally, some variations within Magnoliophyta species were observed. The obtained metabolomics data were utilized for pollen differentiation at the taxonomic scale and provided valuable information in relation to pollen interactions during reproduction and its related applications.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902019/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30051172","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pollen is a cornerstone of life for plants. Its durability, adaptability, and complex design are the key factors to successful plant reproduction, genetic diversity, and the maintenance of ecosystems. A detailed study of its chemical composition is important to understand the mechanism of pollen-pollinator interactions, pollination processes, and allergic reactions. In this study, a multimodal approach involving Fourier transform infrared spectrometry (FTIR), direct mass spectrometry with an atmospheric solids analysis probe (ASAP), matrix-assisted laser desorption/ionization (MALDI) and ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was applied for metabolite profiling. ATR-FTIR provided an initial overview of the present metabolite classes. Phenylpropanoid, lipidic, and carbohydrate structures were revealed. The hydrophobic outer layer of pollen was characterized in detail by ASAP-MS profiling, and esters, phytosterols, and terpenoids were observed. Diacyl- and triacylglycerols and carbohydrate structures were identified in MALDI-MS spectra. The MALDI-MS imaging of lipids proved to be helpful during the microscopic characterization of pollen species in their mixture. Polyphenol profiling and the quantification of important secondary metabolites were performed by UHPLC-MS in context with pollen coloration and their antioxidant and antimicrobial properties. The obtained results revealed significant chemical differences among Magnoliophyta and Pinophyta pollen. Additionally, some variations within Magnoliophyta species were observed. The obtained metabolomics data were utilized for pollen differentiation at the taxonomic scale and provided valuable information in relation to pollen interactions during reproduction and its related applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信