{"title":"Long noncoding RNA MATN1-AS1 contributes to oxaliplatin resistance of gastric cancer cells through miR-518b/ZNF281 axis.","authors":"Xiuhuan Qiu, Licheng Zhang, Fengying Guo, Ruixiang Guo","doi":"10.1007/s00210-025-03990-7","DOIUrl":null,"url":null,"abstract":"<p><p>Chemoresistance leads to poor outcomes of patients with gastric cancer (GC). Long non-coding RNAs (lncRNAs) have been demonstrated as novel gene modulators in various carcinomas and chemoresistance. Our study aimed to investigate the role and underlying modulatory mechanism of lncRNA MATN1-AS1 in GC chemoresistance. CCK-8, flow cytometry, and Transwell assays were performed to explore the influence of the MATN1-AS1/microRNA (miR)-518b/zinc finger protein 281 (ZNF281) axis on the half inhibition concentration (IC50) to oxaliplatin (OXA), apoptosis, migration, and invasion of OXA-resistant GC cells. Dual-luciferase reporter assay was conducted to confirm the target association between miR-518b and MATN1-AS1 (or ZNF281). Xenograft mouse models were established to confirm the role of MATN1-AS1 silencing in vivo. The expression of MATN1-AS1, miR-518b, ZNF281, and multidrug resistance-related genes was detected through RT-qPCR and western blotting. MATN1-AS1 expression was upregulated in OXA-resistant GC tissues and cell lines versus OXA-sensitive tissues and parental cell lines. MATN1-AS1 depletion significantly inhibited the IC50 value of OXA, cell migration, invasion, and drug resistance but promoted cell apoptosis in OXA-resistant GC cells. Additionally, MATN1-AS1 upregulated ZNF281 expression by sponging miR-518b in OXA-resistant GC cells. Inhibiting miR-518b or overexpressing ZNF281 antagonized the effects of MATN1-AS1 silencing on OXA resistance of GC cells. Upregulation of ZNF281 abrogated the suppressive effects of miR-518b overexpression on OXA resistance of GC cells. Moreover, MATN1-AS1 knockdown suppressed tumor growth, OXA resistance, and Ki-67 expression in xenograft mouse models. MATN1-AS1 promotes OXA resistance of GC cells by enhancing ZNF281 expression via sequestration of miR-518b, shedding new light on the chemoresistance of GC.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-025-03990-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemoresistance leads to poor outcomes of patients with gastric cancer (GC). Long non-coding RNAs (lncRNAs) have been demonstrated as novel gene modulators in various carcinomas and chemoresistance. Our study aimed to investigate the role and underlying modulatory mechanism of lncRNA MATN1-AS1 in GC chemoresistance. CCK-8, flow cytometry, and Transwell assays were performed to explore the influence of the MATN1-AS1/microRNA (miR)-518b/zinc finger protein 281 (ZNF281) axis on the half inhibition concentration (IC50) to oxaliplatin (OXA), apoptosis, migration, and invasion of OXA-resistant GC cells. Dual-luciferase reporter assay was conducted to confirm the target association between miR-518b and MATN1-AS1 (or ZNF281). Xenograft mouse models were established to confirm the role of MATN1-AS1 silencing in vivo. The expression of MATN1-AS1, miR-518b, ZNF281, and multidrug resistance-related genes was detected through RT-qPCR and western blotting. MATN1-AS1 expression was upregulated in OXA-resistant GC tissues and cell lines versus OXA-sensitive tissues and parental cell lines. MATN1-AS1 depletion significantly inhibited the IC50 value of OXA, cell migration, invasion, and drug resistance but promoted cell apoptosis in OXA-resistant GC cells. Additionally, MATN1-AS1 upregulated ZNF281 expression by sponging miR-518b in OXA-resistant GC cells. Inhibiting miR-518b or overexpressing ZNF281 antagonized the effects of MATN1-AS1 silencing on OXA resistance of GC cells. Upregulation of ZNF281 abrogated the suppressive effects of miR-518b overexpression on OXA resistance of GC cells. Moreover, MATN1-AS1 knockdown suppressed tumor growth, OXA resistance, and Ki-67 expression in xenograft mouse models. MATN1-AS1 promotes OXA resistance of GC cells by enhancing ZNF281 expression via sequestration of miR-518b, shedding new light on the chemoresistance of GC.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.