Bioconversion of Alpha-Cembratriene-4,6-diol into High-Value Compound Farnesal Through Employment of a Novel Stenotrophomonas maltophilia H3-1 Strain.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shen Huang, Jiaming Cheng, Huibo Hu, Aamir Rasool, Robina Manzoor, Duobin Mao
{"title":"Bioconversion of Alpha-Cembratriene-4,6-diol into High-Value Compound Farnesal Through Employment of a Novel <i>Stenotrophomonas maltophilia</i> H3-1 Strain.","authors":"Shen Huang, Jiaming Cheng, Huibo Hu, Aamir Rasool, Robina Manzoor, Duobin Mao","doi":"10.3390/molecules30051090","DOIUrl":null,"url":null,"abstract":"<p><p>Alpha-cembratriene-4,6-diol (α-CBT-diol) is a complex diterpenoid primarily found in <i>Solanaceae</i> (i.e., tobacco leaves), <i>Pinaceae</i>, and marine corals. Due to its intricate chemical structure, it serves as a precursor for several aroma compounds, including farnesal. Farnesal and its derivatives have applications across various fields, such as the fragrance and flavor industry, pharmaceuticals, agriculture, and cosmetics. In this study, <i>Stenotrophomonas maltophilia</i> H3-1, a strain capable of efficiently biodegrading α-CBT-diol into farnesal, was isolated from soil and identified through 16S rDNA sequence analysis. <i>S. maltophilia</i> H3-1 biodegraded 93.3% of α-CBT-diol (300 mg/L) within 36 h when grown under optimized culture conditions, including a temperature of 40 °C, pH of 8, 2 g/L maltose, and 2 g/L ammonium sulfate. Theoretically, this strain can produce 201 mg/L of farnesal during the biotransformation of α-CBT-diol. The putative α-CBT-diol bioconversion pathway expressed in <i>S. maltophilia</i> H3-1 is also proposed. This is the first study to report the bioconversion of α-CBT-diol into the high-value compound farnesal using a novel <i>S. maltophilia</i> H3-1 strain. It highlights that other compounds found in tobacco can also be bioconverted into valuable products.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30051090","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alpha-cembratriene-4,6-diol (α-CBT-diol) is a complex diterpenoid primarily found in Solanaceae (i.e., tobacco leaves), Pinaceae, and marine corals. Due to its intricate chemical structure, it serves as a precursor for several aroma compounds, including farnesal. Farnesal and its derivatives have applications across various fields, such as the fragrance and flavor industry, pharmaceuticals, agriculture, and cosmetics. In this study, Stenotrophomonas maltophilia H3-1, a strain capable of efficiently biodegrading α-CBT-diol into farnesal, was isolated from soil and identified through 16S rDNA sequence analysis. S. maltophilia H3-1 biodegraded 93.3% of α-CBT-diol (300 mg/L) within 36 h when grown under optimized culture conditions, including a temperature of 40 °C, pH of 8, 2 g/L maltose, and 2 g/L ammonium sulfate. Theoretically, this strain can produce 201 mg/L of farnesal during the biotransformation of α-CBT-diol. The putative α-CBT-diol bioconversion pathway expressed in S. maltophilia H3-1 is also proposed. This is the first study to report the bioconversion of α-CBT-diol into the high-value compound farnesal using a novel S. maltophilia H3-1 strain. It highlights that other compounds found in tobacco can also be bioconverted into valuable products.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信