Muhammad Anwarul Nazim, Arezoo Emdadi, Todd Sander, Ronald O'Malley
{"title":"The Effect of Mold Flux Wetting Conditions with Varying Crucible Materials on Crystallization.","authors":"Muhammad Anwarul Nazim, Arezoo Emdadi, Todd Sander, Ronald O'Malley","doi":"10.3390/ma18051174","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding mold flux crystallization is essential for assessing heat transfer during steel casting. The complexity of the mold gap presents challenges in identifying the optimal testing method and nucleation type. This study investigates how variations in wetting properties influence nucleation dynamics, in particular the wetting behaviors of mold flux in platinum and graphite crucibles and how they affect crystallization temperatures and solidification mechanisms. Advanced analytical techniques, including confocal laser scanning microscopy (CLSM), and differential scanning calorimetry (DSC) were employed to analyze nucleation under different conditions, with calibration using synthetic slag, Li<sub>2</sub>SO<sub>4</sub>, and thermodynamic equilibrium simulations. The findings highlight the crucial role of crucible materials in modifying nucleation energy barriers and undercooling requirements. These insights enhance the understanding of mold flux behavior, contributing to the refinement of testing methodologies and the optimization of heat transfer and solidification processes in continuous casting.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901877/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18051174","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding mold flux crystallization is essential for assessing heat transfer during steel casting. The complexity of the mold gap presents challenges in identifying the optimal testing method and nucleation type. This study investigates how variations in wetting properties influence nucleation dynamics, in particular the wetting behaviors of mold flux in platinum and graphite crucibles and how they affect crystallization temperatures and solidification mechanisms. Advanced analytical techniques, including confocal laser scanning microscopy (CLSM), and differential scanning calorimetry (DSC) were employed to analyze nucleation under different conditions, with calibration using synthetic slag, Li2SO4, and thermodynamic equilibrium simulations. The findings highlight the crucial role of crucible materials in modifying nucleation energy barriers and undercooling requirements. These insights enhance the understanding of mold flux behavior, contributing to the refinement of testing methodologies and the optimization of heat transfer and solidification processes in continuous casting.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.